BrainSTEAM: A Practical Pipeline for Connectome-based fMRI Analysis towards Subject Classification.

Alexis Li, Yi Yang, Hejie Cui, Carl Yang
{"title":"BrainSTEAM: A Practical Pipeline for Connectome-based fMRI Analysis towards Subject Classification.","authors":"Alexis Li, Yi Yang, Hejie Cui, Carl Yang","doi":"10.1142/9789811286421_0005","DOIUrl":null,"url":null,"abstract":"Functional brain networks represent dynamic and complex interactions among anatomical regions of interest (ROIs), providing crucial clinical insights for neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have proven immense success and effectiveness in analyzing structured network data. However, due to the high complexity of data acquisition, resulting in limited training resources of neuroimaging data, GNNs, like all deep learning models, suffer from overfitting. Moreover, their capability to capture useful neural patterns for downstream prediction is also adversely affected. To address such challenge, this study proposes BrainSTEAM, an integrated framework featuring a spatio-temporal module that consists of an EdgeConv GNN model, an autoencoder network, and a Mixup strategy. In particular, the spatio-temporal module aims to dynamically segment the time series signals of the ROI features for each subject into chunked sequences. We leverage each sequence to construct correlation networks, thereby increasing the training data. Additionally, we employ the EdgeConv GNN to capture ROI connectivity structures, an autoencoder for data denoising, and mixup for enhancing model training through linear data augmentation. We evaluate our framework on two real-world neuroimaging datasets, ABIDE for Autism prediction and HCP for gender prediction. Extensive experiments demonstrate the superiority and robustness of BrainSTEAM when compared to a variety of existing models, showcasing the strong potential of our proposed mechanisms in generalizing to other studies for connectome-based fMRI analysis.","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"418 1","pages":"53-64"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811286421_0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Functional brain networks represent dynamic and complex interactions among anatomical regions of interest (ROIs), providing crucial clinical insights for neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have proven immense success and effectiveness in analyzing structured network data. However, due to the high complexity of data acquisition, resulting in limited training resources of neuroimaging data, GNNs, like all deep learning models, suffer from overfitting. Moreover, their capability to capture useful neural patterns for downstream prediction is also adversely affected. To address such challenge, this study proposes BrainSTEAM, an integrated framework featuring a spatio-temporal module that consists of an EdgeConv GNN model, an autoencoder network, and a Mixup strategy. In particular, the spatio-temporal module aims to dynamically segment the time series signals of the ROI features for each subject into chunked sequences. We leverage each sequence to construct correlation networks, thereby increasing the training data. Additionally, we employ the EdgeConv GNN to capture ROI connectivity structures, an autoencoder for data denoising, and mixup for enhancing model training through linear data augmentation. We evaluate our framework on two real-world neuroimaging datasets, ABIDE for Autism prediction and HCP for gender prediction. Extensive experiments demonstrate the superiority and robustness of BrainSTEAM when compared to a variety of existing models, showcasing the strong potential of our proposed mechanisms in generalizing to other studies for connectome-based fMRI analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BrainSTEAM:基于连接组的 fMRI 分析的实用管道,实现受试者分类。
大脑功能网络代表了解剖学感兴趣区(ROIs)之间动态而复杂的相互作用,为神经模式发现和疾病诊断提供了重要的临床见解。近年来,图神经网络(GNN)在分析结构化网络数据方面取得了巨大的成功和成效。然而,由于数据获取的高复杂性,导致神经影像数据的训练资源有限,图神经网络和所有深度学习模型一样,都存在过度拟合的问题。此外,它们捕捉有用神经模式进行下游预测的能力也受到了不利影响。为了应对这一挑战,本研究提出了 BrainSTEAM,这是一个具有时空模块的集成框架,由 EdgeConv GNN 模型、自动编码器网络和混合策略组成。其中,时空模块旨在将每个受试者 ROI 特征的时间序列信号动态分割成块序列。我们利用每个序列构建相关网络,从而增加训练数据。此外,我们还使用 EdgeConv GNN 捕捉 ROI 连接结构,使用自动编码器进行数据去噪,并使用 mixup 通过线性数据增强来加强模型训练。我们在两个真实世界的神经成像数据集上对我们的框架进行了评估,一个是用于自闭症预测的 ABIDE 数据集,另一个是用于性别预测的 HCP 数据集。广泛的实验证明了 BrainSTEAM 与各种现有模型相比的优越性和鲁棒性,展示了我们提出的机制在推广到其他基于连接体的 fMRI 分析研究中的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
FedBrain: Federated Training of Graph Neural Networks for Connectome-based Brain Imaging Analysis. Generating new drug repurposing hypotheses using disease-specific hypergraphs. Impact of Measurement Noise on Genetic Association Studies of Cardiac Function. Imputation of race and ethnicity categories using genetic ancestry from real-world genomic testing data. intCC: An efficient weighted integrative consensus clustering of multimodal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1