Petr Horky, A. Prokeš, Radek Zavorka, Josef Vychodil, J. Kelner, C. Ziółkowski, A. Chandra
{"title":"Channel Impulse Response Peak Clustering Using Neural Networks","authors":"Petr Horky, A. Prokeš, Radek Zavorka, Josef Vychodil, J. Kelner, C. Ziółkowski, A. Chandra","doi":"10.1109/CommNet60167.2023.10365265","DOIUrl":null,"url":null,"abstract":"This paper introduces an approach to process channel sounder data acquired from Channel Impulse Response (CIR) of 60GHz and 80GHz channel sounder systems, through the integration of Long Short-Term Memory (LSTM) Neural Network (NN) and Fully Connected Neural Network (FCNN). The primary goal is to enhance and automate cluster detection within peaks from noised CIR data. The study initially compares the performance of LSTM NN and FCNN across different input sequence lengths. Notably, LSTM surpasses FCNN due to its incorporation of memory cells, which prove beneficial for handling longer series.Additionally, the paper investigates the robustness of LSTM NN through various architectural configurations. The findings suggest that robust neural networks tend to closely mimic the input function, whereas smaller neural networks are better at generalizing trends in time series data, which is desirable for anomaly detection, where function peaks are regarded as anomalies.Finally, the selected LSTM NN is compared with traditional signal filters, including Butterworth, Savitzky-Golay, Bessel/Thomson, and median filters. Visual observations indicate that the most effective methods for peak detection within channel impulse response data are either the LSTM NN or median filter, as they yield similar results.","PeriodicalId":505542,"journal":{"name":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"42 3","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CommNet60167.2023.10365265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an approach to process channel sounder data acquired from Channel Impulse Response (CIR) of 60GHz and 80GHz channel sounder systems, through the integration of Long Short-Term Memory (LSTM) Neural Network (NN) and Fully Connected Neural Network (FCNN). The primary goal is to enhance and automate cluster detection within peaks from noised CIR data. The study initially compares the performance of LSTM NN and FCNN across different input sequence lengths. Notably, LSTM surpasses FCNN due to its incorporation of memory cells, which prove beneficial for handling longer series.Additionally, the paper investigates the robustness of LSTM NN through various architectural configurations. The findings suggest that robust neural networks tend to closely mimic the input function, whereas smaller neural networks are better at generalizing trends in time series data, which is desirable for anomaly detection, where function peaks are regarded as anomalies.Finally, the selected LSTM NN is compared with traditional signal filters, including Butterworth, Savitzky-Golay, Bessel/Thomson, and median filters. Visual observations indicate that the most effective methods for peak detection within channel impulse response data are either the LSTM NN or median filter, as they yield similar results.