Heart Disease Prediction based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization

Agung Muliawan, Achmad Rizal, S. Hadiyoso
{"title":"Heart Disease Prediction based on Physiological Parameters Using Ensemble Classifier and Parameter Optimization","authors":"Agung Muliawan, Achmad Rizal, S. Hadiyoso","doi":"10.37385/jaets.v5i1.2169","DOIUrl":null,"url":null,"abstract":"This study describes the prediction of heart disease using ensemble classifiers with parameter optimization. As input, a public dataset was taken from UCI machine learning repository, which refers to the dataset at UCI Machine learning. The dataset consists of 13 variables that are considered to influence heart disease. Particle swarm optimization (PSO) was used for feature selection and principal component analysis (PCA) for feature extraction to reduce the features' dimensions. The application of parameter optimization on several machine learning methods such as SVM (Radial Basis Function), Deep learning, and Ensemble Classifier (bagging and boosting) to get the highest accuracy comparison. The results of this study using PSO dimensionality reduction in the public dataset of heart disease resulted in the slightest accuracy compared to PCA. In contrast, the highest accuracy was obtained from optimizing Deep Learning parameters with an accuracy of 84.47% and optimization of SVM RBF parameters with an accuracy of 83.56%. The highest accuracy in the ensemble classifier using bagging on SVM of 83.51%, with a difference of 0.5% from SVM without using bagging.","PeriodicalId":509378,"journal":{"name":"Journal of Applied Engineering and Technological Science (JAETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering and Technological Science (JAETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37385/jaets.v5i1.2169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study describes the prediction of heart disease using ensemble classifiers with parameter optimization. As input, a public dataset was taken from UCI machine learning repository, which refers to the dataset at UCI Machine learning. The dataset consists of 13 variables that are considered to influence heart disease. Particle swarm optimization (PSO) was used for feature selection and principal component analysis (PCA) for feature extraction to reduce the features' dimensions. The application of parameter optimization on several machine learning methods such as SVM (Radial Basis Function), Deep learning, and Ensemble Classifier (bagging and boosting) to get the highest accuracy comparison. The results of this study using PSO dimensionality reduction in the public dataset of heart disease resulted in the slightest accuracy compared to PCA. In contrast, the highest accuracy was obtained from optimizing Deep Learning parameters with an accuracy of 84.47% and optimization of SVM RBF parameters with an accuracy of 83.56%. The highest accuracy in the ensemble classifier using bagging on SVM of 83.51%, with a difference of 0.5% from SVM without using bagging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集合分类器和参数优化基于生理参数预测心脏病
本研究介绍了利用参数优化的集合分类器预测心脏病的方法。作为输入,研究人员从加州大学洛杉矶分校机器学习资料库(即加州大学洛杉矶分校机器学习资料库)中提取了一个公共数据集。该数据集由 13 个被认为会影响心脏病的变量组成。粒子群优化(PSO)用于特征选择,主成分分析(PCA)用于特征提取,以减少特征的维数。在 SVM(径向基函数)、深度学习和集合分类器(bagging 和 boosting)等几种机器学习方法上应用参数优化,以获得最高的准确率比较。本研究在心脏病公共数据集中使用 PSO 降维的结果与 PCA 相比,准确率最低。相比之下,优化深度学习参数的准确率最高,为 84.47%,优化 SVM RBF 参数的准确率为 83.56%。在 SVM 上使用袋装法的集合分类器的准确率最高,为 83.51%,与不使用袋装法的 SVM 的准确率相差 0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pest Control System on Agricultural Land using IoT Electronic Controller An Analytical Study on the Most Important Methods and Data Sets Used to Identify People Through ECG: Review Applications of IoT-Enabled Smart Model: A Model For Enhancing Food Service Operation in Developing Countries The Fuel System Modification To Strengthen Achievement And The Prospect Of Utilizing Gasoline Ethanol Blended With Water Injection Microcontroller-Based Intravenous Fluid Monitoring System Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1