{"title":"Glass and Glass-Ceramic Porous Materials for Biomedical Applications","authors":"Olga Kędzia, M. Lubas, Agata Dudek","doi":"10.2478/czoto-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract Biosilicate glasses and glass-ceramic materials obtained on their basis are an important research area in tissue engineering due to their ability to regenerate bones. The most important features of bioactive glasses include: the ability to biodegrade and high bioactivity. Appropriate porosity, pore size, surface structure and topography, chemical composition and ion release kinetics, as well as mechanical properties enable the adhesion of mesenchymal cells and their differentiation towards osteoblast cells and stimulate further proliferation and angiogenesis. This study concerns the subject of bioglass, in particular Bioglass 45S5 and glass-crystalline porous materials in the context of their properties enabling the reconstruction of bone tissue and possible applications. The article addresses crucial issues of shaping the properties of glass and glasscrystalline porous structures by introducing changes in their composition and the method of their production, and also discusses the importance of foaming agents.","PeriodicalId":315981,"journal":{"name":"System Safety: Human - Technical Facility - Environment","volume":"48 5","pages":"302 - 310"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System Safety: Human - Technical Facility - Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/czoto-2023-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Biosilicate glasses and glass-ceramic materials obtained on their basis are an important research area in tissue engineering due to their ability to regenerate bones. The most important features of bioactive glasses include: the ability to biodegrade and high bioactivity. Appropriate porosity, pore size, surface structure and topography, chemical composition and ion release kinetics, as well as mechanical properties enable the adhesion of mesenchymal cells and their differentiation towards osteoblast cells and stimulate further proliferation and angiogenesis. This study concerns the subject of bioglass, in particular Bioglass 45S5 and glass-crystalline porous materials in the context of their properties enabling the reconstruction of bone tissue and possible applications. The article addresses crucial issues of shaping the properties of glass and glasscrystalline porous structures by introducing changes in their composition and the method of their production, and also discusses the importance of foaming agents.