Mahmoud Elsamanty Elsamanty, Waleed F. Youssef, M. Abdelsalam, A. A. Ibrahim
{"title":"Investigating the Impact of Tool Type on Optimizing Burnishing Parameters for AISI 1035 Steel: A Taguchi and RSM Approach","authors":"Mahmoud Elsamanty Elsamanty, Waleed F. Youssef, M. Abdelsalam, A. A. Ibrahim","doi":"10.21608/erj.2023.330257","DOIUrl":null,"url":null,"abstract":". Metal burnishing is a prominent surface finishing process that plays a significant role in enhancing surface quality. This research focuses on the optimization of ball burnishing process parameters using the Taguchi and Response Surface Methodology (RSM) approaches. The study employs three distinct tools designed for this purpose, with experiments conducted. Surface roughness and out-of-roundness measurements were performed. The Taguchi method demonstrated that the rigid tool achieved minimum surface roughness at a burnishing speed of 500 rpm, a feed rate of 0.09 mm/rev, and a penetration depth of 0.35 mm. Conversely, the pneumatic tool achieved the minimum surface roughness at a burnishing speed of 600 rpm, a feed rate of 0.1 mm/rev, and a penetration depth of 0.2 mm. Regarding out-of-roundness, the rigid tool achieved minimum values at a burnishing speed of 600 rpm, a feed rate of 0.11 mm/rev, and a penetration depth of 0.35 mm. For the pneumatic","PeriodicalId":161226,"journal":{"name":"Engineering Research Journal","volume":"57 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/erj.2023.330257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. Metal burnishing is a prominent surface finishing process that plays a significant role in enhancing surface quality. This research focuses on the optimization of ball burnishing process parameters using the Taguchi and Response Surface Methodology (RSM) approaches. The study employs three distinct tools designed for this purpose, with experiments conducted. Surface roughness and out-of-roundness measurements were performed. The Taguchi method demonstrated that the rigid tool achieved minimum surface roughness at a burnishing speed of 500 rpm, a feed rate of 0.09 mm/rev, and a penetration depth of 0.35 mm. Conversely, the pneumatic tool achieved the minimum surface roughness at a burnishing speed of 600 rpm, a feed rate of 0.1 mm/rev, and a penetration depth of 0.2 mm. Regarding out-of-roundness, the rigid tool achieved minimum values at a burnishing speed of 600 rpm, a feed rate of 0.11 mm/rev, and a penetration depth of 0.35 mm. For the pneumatic