{"title":"Calculation of Mutual Inductance between Two Planar Coils with Custom Specifications and Positions Using a Machine Learning Approach","authors":"Mahdi Asadi, Ali x Ali Rezaei, A. Abazari","doi":"10.58190/icontas.2023.50","DOIUrl":null,"url":null,"abstract":"Wireless power transmission systems enable the transfer of electricity between grids without the use of physical wires. Different methods are employed for wireless power transfer, each suited to different distances. Inductive coupling, the subject of this study, is typically used for shorter distances. The effectiveness of inductive coupling systems is evaluated using a parameter called mutual inductance. In the present study, an attempt is made to provide a model for calculating mutual inductance in wireless power transfer systems using a machine learning approach. To achieve this goal, finite element simulations are employed, and 64 datasets are generated from mutual inductance calculations in various scenarios. These datasets are used to train machine learning regression algorithms, including linear regression, support vector regression, decision tree regression, and artificial neural networks. The evaluation results, using performance metrics such as R-squared, mean absolute error, and root mean square error, confirm that among these four algorithms, the artificial neural network exhibits higher computational accuracy with an R-squared value of 0.950 for predicting test data.","PeriodicalId":509439,"journal":{"name":"Proceedings of the International Conference on New Trends in Applied Sciences","volume":"25 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on New Trends in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58190/icontas.2023.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless power transmission systems enable the transfer of electricity between grids without the use of physical wires. Different methods are employed for wireless power transfer, each suited to different distances. Inductive coupling, the subject of this study, is typically used for shorter distances. The effectiveness of inductive coupling systems is evaluated using a parameter called mutual inductance. In the present study, an attempt is made to provide a model for calculating mutual inductance in wireless power transfer systems using a machine learning approach. To achieve this goal, finite element simulations are employed, and 64 datasets are generated from mutual inductance calculations in various scenarios. These datasets are used to train machine learning regression algorithms, including linear regression, support vector regression, decision tree regression, and artificial neural networks. The evaluation results, using performance metrics such as R-squared, mean absolute error, and root mean square error, confirm that among these four algorithms, the artificial neural network exhibits higher computational accuracy with an R-squared value of 0.950 for predicting test data.
无线输电系统使电网之间的电力传输无需使用物理电线。无线电力传输采用不同的方法,每种方法适用于不同的距离。电感耦合是本研究的主题,通常用于较短的距离。电感耦合系统的有效性是通过一个称为互感的参数来评估的。在本研究中,我们尝试使用机器学习方法提供一个模型,用于计算无线电力传输系统中的互感。为实现这一目标,我们采用了有限元模拟,并从各种情况下的互感计算中生成了 64 个数据集。这些数据集用于训练机器学习回归算法,包括线性回归、支持向量回归、决策树回归和人工神经网络。使用 R 平方、平均绝对误差和均方根误差等性能指标进行的评估结果证实,在这四种算法中,人工神经网络的计算精度更高,预测测试数据的 R 平方值为 0.950。