AI-based intelligent virtual image meteorological services

Water Supply Pub Date : 2023-11-30 DOI:10.2166/ws.2023.315
Fang Guo, Yang Xu, Yaping Li, Ling Guo
{"title":"AI-based intelligent virtual image meteorological services","authors":"Fang Guo, Yang Xu, Yaping Li, Ling Guo","doi":"10.2166/ws.2023.315","DOIUrl":null,"url":null,"abstract":"Although modern meteorological service and prediction systems have achieved good applications in numerical models, these models are often influenced by multiple random factors and cannot adapt well to the meteorological service and prediction needs of complex climate regions. With the continuous development and maturity of artificial intelligence (AI) algorithms represented by neural networks, meteorological departments are attempting to replace or compensate for traditional numerical models with statistical methods. This article designed an AI intelligent meteorological service platform to simulate what happens when people use it. Based on commonly used AI technologies in meteorological research, the temporal data algorithm mentioned in this article is used for prediction. This article selected the actual daily average water vapor pressure and daily average relative humidity data of three meteorological stations over the past 10 days for analysis. The maximum and minimum of the actual daily average vapor pressure for 10 days are 30.2 and 28.1 Pa, respectively, the predicted maximum and minimum values are of 30 and 28 Pa, respectively, and the maximum and minimum values of the actual daily average vapor pressure over 10 days of Cupertino are 30.4 and 28.4 Pa, respectively, which can prove the effectiveness of AI-based intelligent virtual imaging meteorological services. This article simulated the AI intelligent meteorological service platform and used temporal data algorithms for prediction.","PeriodicalId":23725,"journal":{"name":"Water Supply","volume":"31 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although modern meteorological service and prediction systems have achieved good applications in numerical models, these models are often influenced by multiple random factors and cannot adapt well to the meteorological service and prediction needs of complex climate regions. With the continuous development and maturity of artificial intelligence (AI) algorithms represented by neural networks, meteorological departments are attempting to replace or compensate for traditional numerical models with statistical methods. This article designed an AI intelligent meteorological service platform to simulate what happens when people use it. Based on commonly used AI technologies in meteorological research, the temporal data algorithm mentioned in this article is used for prediction. This article selected the actual daily average water vapor pressure and daily average relative humidity data of three meteorological stations over the past 10 days for analysis. The maximum and minimum of the actual daily average vapor pressure for 10 days are 30.2 and 28.1 Pa, respectively, the predicted maximum and minimum values are of 30 and 28 Pa, respectively, and the maximum and minimum values of the actual daily average vapor pressure over 10 days of Cupertino are 30.4 and 28.4 Pa, respectively, which can prove the effectiveness of AI-based intelligent virtual imaging meteorological services. This article simulated the AI intelligent meteorological service platform and used temporal data algorithms for prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工智能的智能虚拟图像气象服务
虽然现代气象服务和预报系统在数值模式方面取得了良好的应用,但这些模式往往受到多种随机因素的影响,不能很好地适应复杂气候区的气象服务和预报需求。随着以神经网络为代表的人工智能(AI)算法的不断发展和成熟,气象部门正在尝试用统计方法替代或弥补传统数值模式的不足。本文设计了一个人工智能智慧气象服务平台,模拟人们使用该平台时的情况。基于气象研究中常用的人工智能技术,采用本文提到的时空数据算法进行预测。本文选取了三个气象站近 10 天的实际日平均水汽压和日平均相对湿度数据进行分析。10天实际日平均水汽压的最大值和最小值分别为30.2帕和28.1帕,预测的最大值和最小值分别为30帕和28帕,库比蒂诺10天实际日平均水汽压的最大值和最小值分别为30.4帕和28.4帕,可以证明基于AI的智能虚拟成像气象服务的有效性。本文模拟了人工智能智能气象服务平台,并利用时空数据算法进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studying the applicability of electrodialysis technology to treat groundwater in CKDu regions, Sri Lanka: operational parameter optimization of the pilot project Flood modeling using HEC-RAS 2D and IBER 2D: a comparative study Estimation of the crop water stress index (CWSI) of sunflower (Helianthus annuus L.) using sensor-based irrigation scheduling for different irrigation levels Qualitative analysis of physico-chemical parameters of packaged drinking water commercially available in India Adaptation strategies for cumin in Sabzevar, Iran: planting date and irrigation management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1