Optimal pure-pursuit missile guidance

Ilan Rusnak
{"title":"Optimal pure-pursuit missile guidance","authors":"Ilan Rusnak","doi":"10.1007/s42496-023-00185-2","DOIUrl":null,"url":null,"abstract":"<div><p>The endeavor of the pure-pursuit guidance is aligning the missile velocity vector with the line-of-sight to the target. The classical pure-pursuit guidance is not the preferred choice for a guidance law as it does not perform well against moving targets. Albeit this, its appealing feature and the main advantage are that it needs measurement of angle only for implementation, thus reducing the cost at the price of the performance. To this day, the implemented guidance law for classical pure-pursuit is mostly a constant proportional control law, and acceptable miss distance is achieved for stationary and very slow targets, thus the use for engagement of moving targets is limited. This paper's objective is to use the optimal control theory in the design of the guidance law for pure-pursuit guidance and to assess the performance against non-stationary/moving targets and deterministic disturbances. The main conclusion is that applying the optimal control theory to design optimal guidance laws for pure pursuit improves performance and reduces the miss distance below a meter for a moderate target’s velocity. The Optimal Pure-Pursuit Guidance Law for stationary targets is shown to realize the Proportional Navigation guidance law.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 1","pages":"51 - 60"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-023-00185-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The endeavor of the pure-pursuit guidance is aligning the missile velocity vector with the line-of-sight to the target. The classical pure-pursuit guidance is not the preferred choice for a guidance law as it does not perform well against moving targets. Albeit this, its appealing feature and the main advantage are that it needs measurement of angle only for implementation, thus reducing the cost at the price of the performance. To this day, the implemented guidance law for classical pure-pursuit is mostly a constant proportional control law, and acceptable miss distance is achieved for stationary and very slow targets, thus the use for engagement of moving targets is limited. This paper's objective is to use the optimal control theory in the design of the guidance law for pure-pursuit guidance and to assess the performance against non-stationary/moving targets and deterministic disturbances. The main conclusion is that applying the optimal control theory to design optimal guidance laws for pure pursuit improves performance and reduces the miss distance below a meter for a moderate target’s velocity. The Optimal Pure-Pursuit Guidance Law for stationary targets is shown to realize the Proportional Navigation guidance law.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最佳纯导弹制导
纯跟踪制导的目的是使导弹的速度矢量与目标的视线保持一致。经典的纯追逐制导并不是制导法的首选,因为它在对付移动目标时表现不佳。尽管如此,其吸引人的特点和主要优点是只需测量角度即可实施,从而以性能为代价降低了成本。时至今日,经典纯粹追逐的制导法则大多是恒定比例控制法则,对于静止目标和速度非常慢的目标可以达到可接受的失误距离,因此用于攻击移动目标的效果有限。本文的目的是利用最优控制理论来设计纯追击制导的制导法则,并评估其在对付非静止/移动目标和确定性干扰时的性能。主要结论是,应用最优控制理论设计纯追逐的最优制导法则可提高性能,在目标速度适中的情况下将失误距离缩短至一米以下。针对静止目标的最优纯追逐制导法则实现了比例导航制导法则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface AIDAA News #24 Considerations for a Spaceport in Venezuela: A Developing Country AIDAA News #23 Some Comments About the Quality and Quantity of Papers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1