E. P. Septisetyani, P. W. Prasetyaningrum, K. A. Paramitasari, A. Suyoko, Alayna Lillahida Indri Himawan, Salsabila Azzahra, P. H. Wisnuwardhani, Khairul Anam, Ratna D. Ramadani, Adi Santoso, R. A. Ningrum, N. Herawati, Y. Rubiyana
{"title":"Naringin Effect on SARS-CoV-2 Pseudovirus Entry and Spike Mediated Syncytia Formation in hACE2-overexpressing Cells","authors":"E. P. Septisetyani, P. W. Prasetyaningrum, K. A. Paramitasari, A. Suyoko, Alayna Lillahida Indri Himawan, Salsabila Azzahra, P. H. Wisnuwardhani, Khairul Anam, Ratna D. Ramadani, Adi Santoso, R. A. Ningrum, N. Herawati, Y. Rubiyana","doi":"10.4308/hjb.31.2.336-347","DOIUrl":null,"url":null,"abstract":"A molecular docking study demonstrates the interaction between naringin, a citrus flavonoid, with SARS-CoV-2 spike RBD. Nevertheless, in vitro investigation of the inhibitory effect of naringin on SARS-CoV-2 entry and syncytia models has yet to be carried out. We synthesized VSV∆G-GFP/Spike* pseudovirus (PSV) as a SARS-CoV-2 model by pseudotyping VSV∆G-GFP/S* in BHK-21 cells overexpressing the SARS-CoV-2 spike glycoprotein. In the SARS-CoV-2 PSV entry assay, we utilized CHO-K1 cells transfected with hACE2 plasmid, which were then treated with naringin and SARS-CoV-2 PSV/naringin. After 16-18 h incubation, PSV internalization represented by the GFP signal was observed under a fluorescence microscope. Immunofluorescence staining was also performed to probe the SARS-CoV-2 spike and confirm the PSV entry. We performed a syncytia assay using 293T cells co-transfected with SARS-CoV-2 spike/hACE2. Six hours after transfection, the cells were treated with naringin and incubated for another 16-18 hours. Then, we observed syncytia using a phase contrast microscope. Based on fluorescence foci quantification, the results indicated that naringin might inhibit SARS-CoV-2 PSV entry at a concentration of 100 µM (P<0.05). However, naringin did not prevent syncytia formation compared to solvent control. These PSV entry and syncytia assay results suggested that naringin potentially inhibited SARS-CoV-2 viral infection but not cell-to-cell viral transmission.","PeriodicalId":12927,"journal":{"name":"HAYATI Journal of Biosciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HAYATI Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4308/hjb.31.2.336-347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
A molecular docking study demonstrates the interaction between naringin, a citrus flavonoid, with SARS-CoV-2 spike RBD. Nevertheless, in vitro investigation of the inhibitory effect of naringin on SARS-CoV-2 entry and syncytia models has yet to be carried out. We synthesized VSV∆G-GFP/Spike* pseudovirus (PSV) as a SARS-CoV-2 model by pseudotyping VSV∆G-GFP/S* in BHK-21 cells overexpressing the SARS-CoV-2 spike glycoprotein. In the SARS-CoV-2 PSV entry assay, we utilized CHO-K1 cells transfected with hACE2 plasmid, which were then treated with naringin and SARS-CoV-2 PSV/naringin. After 16-18 h incubation, PSV internalization represented by the GFP signal was observed under a fluorescence microscope. Immunofluorescence staining was also performed to probe the SARS-CoV-2 spike and confirm the PSV entry. We performed a syncytia assay using 293T cells co-transfected with SARS-CoV-2 spike/hACE2. Six hours after transfection, the cells were treated with naringin and incubated for another 16-18 hours. Then, we observed syncytia using a phase contrast microscope. Based on fluorescence foci quantification, the results indicated that naringin might inhibit SARS-CoV-2 PSV entry at a concentration of 100 µM (P<0.05). However, naringin did not prevent syncytia formation compared to solvent control. These PSV entry and syncytia assay results suggested that naringin potentially inhibited SARS-CoV-2 viral infection but not cell-to-cell viral transmission.
期刊介绍:
HAYATI Journal of Biosciences (HAYATI J Biosci) is an international peer-reviewed and open access journal that publishes significant and important research from all area of biosciences fields such as biodiversity, biosystematics, ecology, physiology, behavior, genetics and biotechnology. All life forms, ranging from microbes, fungi, plants, animals, and human, including virus, are covered by HAYATI J Biosci. HAYATI J Biosci published by Department of Biology, Bogor Agricultural University, Indonesia and the Indonesian Society for Biology. We accept submission from all over the world. Our Editorial Board members are prominent and active international researchers in biosciences fields who ensure efficient, fair, and constructive peer-review process. All accepted articles will be published on payment of an article-processing charge, and will be freely available to all readers with worldwide visibility and coverage.