Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports: Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate

IF 3.8 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysts Pub Date : 2023-11-30 DOI:10.3390/catal13121486
Z. Asgar Pour, Marwan M. Abduljawad, Yasser A. Alassmy, Mohammed S. Alnafisah, Mustapha El Hariri El Nokab, Paul H. M. Van Steenberge, Khaled O. Sebakhy
{"title":"Synergistic Catalytic Effects of Alloys of Noble Metal Nanoparticles Supported on Two Different Supports: Crystalline Zeolite Sn-Beta and Carbon Nanotubes for Glycerol Conversion to Methyl Lactate","authors":"Z. Asgar Pour, Marwan M. Abduljawad, Yasser A. Alassmy, Mohammed S. Alnafisah, Mustapha El Hariri El Nokab, Paul H. M. Van Steenberge, Khaled O. Sebakhy","doi":"10.3390/catal13121486","DOIUrl":null,"url":null,"abstract":"Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"11 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121486","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two multifunctional catalytic systems comprising Sn-based/doped crystalline zeolite Beta were synthesized, and they were employed as heterogeneous catalysts in the selective conversion of glycerol to methyl lactate. The first catalytic system, named Au-Pd-Sn-deAl-7.2-Beta-DP, was created through the post-synthesis dealumination of the parent zeolite Beta (Si/Al = 10) using 7.2 M HNO3. Subsequently, it was grafted with 27 mmol of SnCl4, resulting in Sn-deAl-7.2-Beta. Following this, Au and Pd nanoparticles were supported on this catalyst using the deposition–precipitation (DP) method. The second catalytic system was a physical mixture of Au and Pd nanoparticles supported on functionalized carbon nanotubes (Au-Pd-F-CNTs) and Sn-containing zeolite Beta (Sn-deAl-7.2-Beta). Both catalytic systems were employed in glycerol partial oxidation to methyl lactate under the following conditions: 140 °C for 4.5 h under an air pressure of 30 bar. The Au-Pd-Sn-deAl-7.2-Beta-DP catalytic system demonstrated 34% conversion of glycerol with a 76% selectivity for methyl lactate. In contrast, the physical mixture of Au-Pd-F-CNTs and Sn-deAl-7.2-Beta exhibited higher activity, achieving 58% glycerol conversion and a nearly identical selectivity for methyl lactate (77%). The catalytic results and catalyst structure were further analyzed using various characterization techniques, such as X-ray diffraction (XRD), N2 physisorption, scanning electron microscopy (SEM), X-ray fluorescence (XRF), transmission electron microscopy (TEM), UV-vis spectroscopy, and pyridine Fourier transform infrared (FTIR). These analyses emphasized the significance of adjusting the quantity of active sites, particle size, and active sites proximity under the chosen reaction conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种不同载体上支持的贵金属纳米颗粒合金的协同催化效应:晶体沸石 Sn-Beta 和碳纳米管在甘油转化为乳酸甲酯中的应用
我们合成了两种由锡基/掺杂结晶沸石 Beta 组成的多功能催化体系,并将它们用作选择性地将甘油转化为乳酸甲酯的异相催化剂。第一个催化体系名为 Au-Pd-Sn-deAl-7.2-Beta-DP,是通过使用 7.2 M HNO3 对母体沸石 Beta(Si/Al = 10)进行合成后脱胶而生成的。随后,它与 27 mmol SnCl4 接枝,得到 Sn-deAl-7.2-Beta 。随后,采用沉积-沉淀(DP)法将金和钯纳米颗粒支撑在这种催化剂上。第二种催化体系是在功能化碳纳米管(Au-Pd-F-CNTs)和含锡沸石 Beta(Sn-deAl-7.2-Beta)上支撑的 Au 和 Pd 纳米粒子的物理混合物。在甘油部分氧化成乳酸甲酯的过程中,这两种催化体系均在以下条件下使用:气压为 30 巴,温度为 140 °C,时间为 4.5 小时。Au-Pd-Sn-deAl-7.2-Beta-DP 催化体系的甘油转化率为 34%,对乳酸甲酯的选择性为 76%。相比之下,Au-Pd-F-CNTs 和 Sn-deAl-7.2-Beta 的物理混合物表现出更高的活性,实现了 58% 的甘油转化率和几乎相同的乳酸甲酯选择性(77%)。利用各种表征技术,如 X 射线衍射 (XRD)、N2 物理吸附、扫描电子显微镜 (SEM)、X 射线荧光 (XRF)、透射电子显微镜 (TEM)、紫外-可见光谱和吡啶傅立叶变换红外 (FTIR),进一步分析了催化结果和催化剂结构。这些分析强调了在所选反应条件下调整活性位点数量、粒度和活性位点邻近性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysts
Catalysts CHEMISTRY, PHYSICAL-
CiteScore
6.80
自引率
7.70%
发文量
1330
审稿时长
3 months
期刊介绍: Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Dehydration of Isopropanol over Silica-Supported Heteropoly Acids A Kinetic Model of Furfural Hydrogenation to 2-Methylfuran on Nanoparticles of Nickel Supported on Sulfuric Acid-Modified Biochar Catalyst Comparative Study of Supported Ni and Co Catalysts Prepared Using the All-in-One Method in the Hydrogenation of CO2: Effects of Using (Poly)Vinyl Alcohol (PVA) as an Additive Editorial: Special Issue Entitled “Development of g-C3N4-Based Photocatalysts: Environmental Purification and Energy Conversion” Structure Robustness of Highly Dispersed Pt/Al2O3 Catalyst for Propane Dehydrogenation during Oxychlorination Regeneration Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1