Comparative analysis of two parameter-dependent split window algorithms for the land surface temperature retrieval using MODIS TIR observations

Q3 Agricultural and Biological Sciences Journal of Agrometeorology Pub Date : 2023-11-30 DOI:10.54386/jam.v25i4.2286
Jalpesh A. Dave, M. Pandya, Dhiraj B. Shah, Hasmukh K. Varchand, Parthkumar Parmar, H. Trivedi, V. Pathak, Manoj Singh, Disha B. Kardani
{"title":"Comparative analysis of two parameter-dependent split window algorithms for the land surface temperature retrieval using MODIS TIR observations","authors":"Jalpesh A. Dave, M. Pandya, Dhiraj B. Shah, Hasmukh K. Varchand, Parthkumar Parmar, H. Trivedi, V. Pathak, Manoj Singh, Disha B. Kardani","doi":"10.54386/jam.v25i4.2286","DOIUrl":null,"url":null,"abstract":"MODIS Land Surface Temperature (LST) product is extensively used in agricultural studies like crop health assessment, soil moisture estimation, irrigation management, land use land cover change, air-temperature retrieval and crop water stress detection. Numerous studies have used Split Window (SW) algorithms to retrieve LST from MODIS TIR bands. Among them, some utilize Sensor View Angle Dependent (SVAD) or Columnar Water Vapor Dependent (CWVD) SW algorithms. Present study aims to make use of SVAD and CWVD SW algorithms and compare them to evaluate the LST retrieval accuracy over various land surface type. Theoretical accuracy assessment of the CWVD and SVAD algorithms demonstrates a good accuracy with the RMSE of 1.09K and 1.42K, respectively. The experimental retrieval of LST achieves exceptionally good accuracy, with a RMSE of 1.45K in the CWVD algorithm and 1.80K in the SVAD algorithm, particularly in heterogeneous regions. In homogeneous regions, the RMSE values are 1.14K in CWVD and 1.10K in SVAD. Both algorithms exhibit satisfactory accuracy; nevertheless, the application of these algorithms may vary in agricultural contexts. Based on the obtained results and the inclusion of required parameters, we have arrived at a conclusion regarding the superior performance of the SVAD compared to the CWVD for LST retrieval.","PeriodicalId":56127,"journal":{"name":"Journal of Agrometeorology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54386/jam.v25i4.2286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

MODIS Land Surface Temperature (LST) product is extensively used in agricultural studies like crop health assessment, soil moisture estimation, irrigation management, land use land cover change, air-temperature retrieval and crop water stress detection. Numerous studies have used Split Window (SW) algorithms to retrieve LST from MODIS TIR bands. Among them, some utilize Sensor View Angle Dependent (SVAD) or Columnar Water Vapor Dependent (CWVD) SW algorithms. Present study aims to make use of SVAD and CWVD SW algorithms and compare them to evaluate the LST retrieval accuracy over various land surface type. Theoretical accuracy assessment of the CWVD and SVAD algorithms demonstrates a good accuracy with the RMSE of 1.09K and 1.42K, respectively. The experimental retrieval of LST achieves exceptionally good accuracy, with a RMSE of 1.45K in the CWVD algorithm and 1.80K in the SVAD algorithm, particularly in heterogeneous regions. In homogeneous regions, the RMSE values are 1.14K in CWVD and 1.10K in SVAD. Both algorithms exhibit satisfactory accuracy; nevertheless, the application of these algorithms may vary in agricultural contexts. Based on the obtained results and the inclusion of required parameters, we have arrived at a conclusion regarding the superior performance of the SVAD compared to the CWVD for LST retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较分析利用 MODIS TIR 观测数据进行陆地表面温度检索的两种依赖参数的分割窗算法
MODIS 陆面温度(LST)产品广泛应用于农业研究,如作物健康评估、土壤水分估算、灌溉管理、土地利用土地覆盖变化、气温检索和作物水分胁迫检测。许多研究使用分割窗(SW)算法从 MODIS TIR 波段检索 LST。其中,一些研究采用了传感器视角依赖(SVAD)或柱状水汽依赖(CWVD)SW 算法。本研究旨在使用 SVAD 和 CWVD SW 算法,并对它们进行比较,以评估不同地表类型的 LST 检索精度。CWVD 和 SVAD 算法的理论精度评估结果表明其精度良好,均方根误差分别为 1.09K 和 1.42K。LST 的实验检索精度特别高,CWVD 算法的 RMSE 为 1.45K,SVAD 算法的 RMSE 为 1.80K,尤其是在异质区域。在同质区域,CWVD 算法的 RMSE 值为 1.14K,SVAD 算法为 1.10K。这两种算法都表现出令人满意的精确度;然而,这些算法在农业环境中的应用可能会有所不同。根据所获得的结果和所需参数,我们得出结论,在 LST 检索方面,SVAD 的性能优于 CWVD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agrometeorology
Journal of Agrometeorology 农林科学-农艺学
CiteScore
1.40
自引率
0.00%
发文量
95
审稿时长
>12 weeks
期刊介绍: The Journal of Agrometeorology (ISSN 0972-1665) , is a quarterly publication of Association of Agrometeorologists appearing in March, June, September and December. Since its beginning in 1999 till 2016, it was a half yearly publication appearing in June and December. In addition to regular issues, Association also brings out the special issues of the journal covering selected papers presented in seminar symposia organized by the Association.
期刊最新文献
Development of weather based statistical models for Rhizoctonia aerial blight disease of soybean in Tarai region of Uttarakhand Water use efficiency and water productivity of aerobic rice under drip irrigation and fertigation system by using daily soil water balance Drought severity estimation using NDWI index in Parbhani district of Maharashtra Comparison of machine learning classification algorithms based on weather variables and seed characteristics for the selection of paddy seed Growth performance and agrometeorological indices of rice under different establishment methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1