CFD Analysis of Pure Waterjet Nozzle for Fruit Peeling and Cutting Process

Q2 Mathematics CFD Letters Pub Date : 2023-11-29 DOI:10.37934/cfdl.16.1.138149
Yaghthiswara Seran, Muhamad Safwan, Muhamad Azmi, Abdul Halim, Kamarulzaman Kamarudin, Lam Chee Kiang, Norasmadi Abdul Rahim, W. M. Nooriman, W. Yahya, Tan Kian Yew, Lum Wei, Min
{"title":"CFD Analysis of Pure Waterjet Nozzle for Fruit Peeling and Cutting Process","authors":"Yaghthiswara Seran, Muhamad Safwan, Muhamad Azmi, Abdul Halim, Kamarulzaman Kamarudin, Lam Chee Kiang, Norasmadi Abdul Rahim, W. M. Nooriman, W. Yahya, Tan Kian Yew, Lum Wei, Min","doi":"10.37934/cfdl.16.1.138149","DOIUrl":null,"url":null,"abstract":"Waterjet Technology has been used vastly in our world nowadays due to its advantages and it can be implemented in many industrial sectors or even in the medical sector and food industry sector. Nozzle is a component that has been utilized in waterjet which is employed in a wide range of engineering applications to control the rate of flow, velocity, and the jet pressure of the water. This paper discusses the CFD analysis on a pure waterjet nozzle to obtain the output of the water that jets out from three different diameters of nozzle and select the effective nozzle diameter to be used for the fruit peeling and cutting process. The pressure used for the analysis are 200MPa, 300MPa and 400MPa, which was analysed for three different nozzle diameter 0.76mm, 1.02mm and 1.27mm. From CFD analysis, it is established that as the pressure loss of the water jet increases, the outlet velocity of the jet increases. Furthermore, for fruit peeling and cutting process the impact angle of the nozzle should be prioritised as the peeling of the fruit should be smooth and even before cutting the fruit. Thus, the most suitable parameters were found to be 400MPa and 1.02mm of pressure and nozzle diameter respectively. This will allow for the intended fruit cutting process with a stand-off distance that can be ranged from 1mm to 9mm.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.1.138149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Waterjet Technology has been used vastly in our world nowadays due to its advantages and it can be implemented in many industrial sectors or even in the medical sector and food industry sector. Nozzle is a component that has been utilized in waterjet which is employed in a wide range of engineering applications to control the rate of flow, velocity, and the jet pressure of the water. This paper discusses the CFD analysis on a pure waterjet nozzle to obtain the output of the water that jets out from three different diameters of nozzle and select the effective nozzle diameter to be used for the fruit peeling and cutting process. The pressure used for the analysis are 200MPa, 300MPa and 400MPa, which was analysed for three different nozzle diameter 0.76mm, 1.02mm and 1.27mm. From CFD analysis, it is established that as the pressure loss of the water jet increases, the outlet velocity of the jet increases. Furthermore, for fruit peeling and cutting process the impact angle of the nozzle should be prioritised as the peeling of the fruit should be smooth and even before cutting the fruit. Thus, the most suitable parameters were found to be 400MPa and 1.02mm of pressure and nozzle diameter respectively. This will allow for the intended fruit cutting process with a stand-off distance that can be ranged from 1mm to 9mm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于水果去皮和切割工艺的纯水喷射喷嘴的 CFD 分析
水刀技术因其优势在当今世界得到了广泛应用,它可以应用于许多工业领域,甚至是医疗和食品行业。喷嘴是水刀中的一个部件,在广泛的工程应用中被用来控制水的流速、速度和喷射压力。本文讨论对纯水射流喷嘴进行 CFD 分析,以获得从三个不同直径的喷嘴喷射出的水的输出量,并选择用于水果去皮和切割过程的有效喷嘴直径。分析使用的压力分别为 200MPa、300MPa 和 400MPa,并对 0.76mm、1.02mm 和 1.27mm 三种不同直径的喷嘴进行了分析。CFD 分析表明,随着水射流压力损失的增加,水射流的出口速度也随之增加。此外,在水果去皮和切割过程中,喷嘴的冲击角度应优先考虑,因为在切割水果之前,水果去皮应平滑均匀。因此,最合适的参数分别是 400MPa 的压力和 1.02mm 的喷嘴直径。这样就能实现预期的水果切割过程,其间距可从 1 毫米到 9 毫米不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CFD Letters
CFD Letters Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
3.40
自引率
0.00%
发文量
76
期刊最新文献
Numerical Investigation of Thermal Performance for Turbulent Water Flow through Dimpled Pipe MHD Stagnation Point Flow of Micropolar Fluid over a Stretching/ Shrinking Sheet Unsteady MHD Walter’s-B Viscoelastic Flow Past a Vertical Porous Plate Effects of Activation Energy and Diffusion Thermo an Unsteady MHD Maxwell Fluid Flow over a Porous Vertical Stretched Sheet in the Presence of Thermophoresis and Brownian Motion Effect of Inlet Pressure on the Polyurethane Spray Nozzle for Soil Cracking Improvement: Simulations using CFD Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1