{"title":"Minimum-Energy Transfer Optimization between Near-Circular Orbits Using an Approximate Closed-Form Solution","authors":"K. Suslov, Maksim Shirobokov, A. Tselousova","doi":"10.3390/aerospace10121002","DOIUrl":null,"url":null,"abstract":"This paper explores the use of the averaging method in the optimal control problem related to the multirevolution orbital transfer of a spacecraft with low-thrust capabilities. The regularized equations of motion are expressed using modified equinoctial elements with the eccentric longitude as a fast variable. The control function is represented as a Fourier series relative to the eccentric longitude. The classical averaging technique’s usage results in the averaged trajectory depending only on a limited number of optimization parameters. Moreover, when transferring between near-circular orbits, the averaged motion can be estimated using analytical formulas. As such, the optimal multiorbit flight problem is simplified to nonlinear programming with fewer parameters, thereby accelerating the optimal solution’s derivation. Two practical examples illustrate the technique’s application: orbital transfer near the geostationary orbit and circular orbit raising maneuver. The solutions derived are compared with Pontryagin extremals.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10121002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the use of the averaging method in the optimal control problem related to the multirevolution orbital transfer of a spacecraft with low-thrust capabilities. The regularized equations of motion are expressed using modified equinoctial elements with the eccentric longitude as a fast variable. The control function is represented as a Fourier series relative to the eccentric longitude. The classical averaging technique’s usage results in the averaged trajectory depending only on a limited number of optimization parameters. Moreover, when transferring between near-circular orbits, the averaged motion can be estimated using analytical formulas. As such, the optimal multiorbit flight problem is simplified to nonlinear programming with fewer parameters, thereby accelerating the optimal solution’s derivation. Two practical examples illustrate the technique’s application: orbital transfer near the geostationary orbit and circular orbit raising maneuver. The solutions derived are compared with Pontryagin extremals.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.