A. Gosteva, Mayya V. Kulikova, M. I. Ivantsov, A. A. Grabchak, Yulya P. Semushina, S. Lapuk, A. Gerasimov, N. Tsvetov
{"title":"CO2 Hydrogenation over Fe-Co Bimetallic Catalyst Derived from the Thermolysis of [Co(NH3)6][Fe(CN)6]","authors":"A. Gosteva, Mayya V. Kulikova, M. I. Ivantsov, A. A. Grabchak, Yulya P. Semushina, S. Lapuk, A. Gerasimov, N. Tsvetov","doi":"10.3390/catal13121475","DOIUrl":null,"url":null,"abstract":"Reducing the amount of CO2 in the atmosphere is a very important task. Therefore, the development and search for new approaches to the synthesis of catalytic systems, allowing for the catalytic conversion of CO2 into valuable products, is an urgent task. In this work, the catalyst was obtained by the thermolysis of a double complex compound. In this regard, kinetic studies of the parameters of the thermolysis process of double complex salts-[Co(NH)3]6][Fe(CN)6] were additionally determined using isoconversion and model approaches of non-isothermal kinetics. The catalyst was studied using various physicochemical methods—X-ray diffraction (XRD), infrared (IR)-spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was shown that, at the stage of catalyst preparation, the formation of a CoFe alloy occurred, while the surface mainly consisted of carbon in sp2-hybridization, and the metals existed in the form of spinel CoFe2O4. It was shown that catalysts based on bimetallic salts were active in the process of hydrogenation of carbon dioxide without a pre-activation stage (CO2 conversion reached 28%, with a specific activity of 4.0 µmolCO2/gMe·s). It was established that it was possible to change the selectivity of the carbon dioxide hydrogenation process by pre-treating the catalyst with hydrogen (selectivity for methane formation in the presence of an unreduced catalyst is 46.4–68.0%, whereas in the presence of a reduced catalyst it is 5.1–16.5%).","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"56 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal13121475","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the amount of CO2 in the atmosphere is a very important task. Therefore, the development and search for new approaches to the synthesis of catalytic systems, allowing for the catalytic conversion of CO2 into valuable products, is an urgent task. In this work, the catalyst was obtained by the thermolysis of a double complex compound. In this regard, kinetic studies of the parameters of the thermolysis process of double complex salts-[Co(NH)3]6][Fe(CN)6] were additionally determined using isoconversion and model approaches of non-isothermal kinetics. The catalyst was studied using various physicochemical methods—X-ray diffraction (XRD), infrared (IR)-spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was shown that, at the stage of catalyst preparation, the formation of a CoFe alloy occurred, while the surface mainly consisted of carbon in sp2-hybridization, and the metals existed in the form of spinel CoFe2O4. It was shown that catalysts based on bimetallic salts were active in the process of hydrogenation of carbon dioxide without a pre-activation stage (CO2 conversion reached 28%, with a specific activity of 4.0 µmolCO2/gMe·s). It was established that it was possible to change the selectivity of the carbon dioxide hydrogenation process by pre-treating the catalyst with hydrogen (selectivity for methane formation in the presence of an unreduced catalyst is 46.4–68.0%, whereas in the presence of a reduced catalyst it is 5.1–16.5%).
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.