{"title":"Impact of the upper-tropospheric cold low on the genesis of Typhoon Hagupit (2020)","authors":"Xiping Zhang, Juan Fang, Zifeng Yu","doi":"10.1175/jas-d-23-0039.1","DOIUrl":null,"url":null,"abstract":"Typhoon Hagupit (2020), which formed unexpectedly close to land, posed great challenges for forecasters. During its genesis, there was a west-moving upper-tropospheric cold low (UTCL) to its north. This study investigated the impact of this UTCL on the genesis process using numerical simulations. In the semi-idealized experiment with this UTCL removed (run-Rcold), pre-Hagupit develops faster, but its track drifts southward in the later stage compared with the control experiment (run-cnl). In the experiment with enhanced UTCL (run-Ecold), the simulated track is similar to that in run-cnl, but pre-Hagupit does not develop into a tropical storm. In run-cnl and run-Ecold, the environmental vertical wind shear is larger than that in run-Rcold in the first two days, and the simulated pre-Hagupit experiences two prominent dry air intrusions in the middle and upper troposphere. At the second intrusion, when the weakened UTCL has moved within 2° of pre-Hagupit, the convection in both experiments decays significantly, and the development of the mid-level vortex begins to lag behind that in run-Rcold, and so does the vertical alignment of the low- and mid-level vortices. The UTCL influences the movement of pre-Hagupit by modifying the large-scale steering flows, especially those above 600 hPa. In run-Rcold, due to the absence of the northward component of wind fields related to the UTCL circulation, pre-Hagupit starts to move west-northwestwards instead of northwestwards as in run-cnl and run-Ecold.","PeriodicalId":508177,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0039.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Typhoon Hagupit (2020), which formed unexpectedly close to land, posed great challenges for forecasters. During its genesis, there was a west-moving upper-tropospheric cold low (UTCL) to its north. This study investigated the impact of this UTCL on the genesis process using numerical simulations. In the semi-idealized experiment with this UTCL removed (run-Rcold), pre-Hagupit develops faster, but its track drifts southward in the later stage compared with the control experiment (run-cnl). In the experiment with enhanced UTCL (run-Ecold), the simulated track is similar to that in run-cnl, but pre-Hagupit does not develop into a tropical storm. In run-cnl and run-Ecold, the environmental vertical wind shear is larger than that in run-Rcold in the first two days, and the simulated pre-Hagupit experiences two prominent dry air intrusions in the middle and upper troposphere. At the second intrusion, when the weakened UTCL has moved within 2° of pre-Hagupit, the convection in both experiments decays significantly, and the development of the mid-level vortex begins to lag behind that in run-Rcold, and so does the vertical alignment of the low- and mid-level vortices. The UTCL influences the movement of pre-Hagupit by modifying the large-scale steering flows, especially those above 600 hPa. In run-Rcold, due to the absence of the northward component of wind fields related to the UTCL circulation, pre-Hagupit starts to move west-northwestwards instead of northwestwards as in run-cnl and run-Ecold.