A Deep Survey on Human Activity Recognition Using Mobile and Wearable Sensors

Shaik Jameer, Hussain Syed
{"title":"A Deep Survey on Human Activity Recognition Using Mobile and Wearable Sensors","authors":"Shaik Jameer, Hussain Syed","doi":"10.4108/eetpht.9.4483","DOIUrl":null,"url":null,"abstract":"Activity-based wellness management is thought to be a powerful application for mobile health. It is possible to provide context-aware wellness services and track human activity thanks to accessing for multiple devices as well as gadgets that we use every day. Generally in smart gadgets like phones, watches, rings etc., the embedded sensors having a wealth data that can be incorporated to person task tracking identification. In a real-world setting, all researchers shown effective boosting algorithms can extract information in person task identification. Identifying basic person tasks such as talk, walk, sit along sleep. Our findings demonstrate that boosting classifiers perform better than conventional machine learning classifiers. Moreover, the feature engineering for differentiating an activity detection capability for smart phones and smart watches. For the purpose of improving the classification of fundamental human activities, upcoming mechanisms give the guidelines for identification for various sensors and wearable devices.","PeriodicalId":36936,"journal":{"name":"EAI Endorsed Transactions on Pervasive Health and Technology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Pervasive Health and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetpht.9.4483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Activity-based wellness management is thought to be a powerful application for mobile health. It is possible to provide context-aware wellness services and track human activity thanks to accessing for multiple devices as well as gadgets that we use every day. Generally in smart gadgets like phones, watches, rings etc., the embedded sensors having a wealth data that can be incorporated to person task tracking identification. In a real-world setting, all researchers shown effective boosting algorithms can extract information in person task identification. Identifying basic person tasks such as talk, walk, sit along sleep. Our findings demonstrate that boosting classifiers perform better than conventional machine learning classifiers. Moreover, the feature engineering for differentiating an activity detection capability for smart phones and smart watches. For the purpose of improving the classification of fundamental human activities, upcoming mechanisms give the guidelines for identification for various sensors and wearable devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用移动和可穿戴传感器进行人类活动识别的深度调查
基于活动的健康管理被认为是移动医疗的一个强大应用。通过接入多种设备和我们日常使用的小工具,可以提供情境感知健康服务并跟踪人类活动。一般来说,在手机、手表、戒指等智能小工具中,嵌入式传感器拥有丰富的数据,可用于人的任务跟踪识别。在现实世界中,所有研究人员都证明了有效的提升算法可以提取人物任务识别中的信息。识别人的基本任务,如说话、走路、坐着和睡觉。我们的研究结果表明,提升分类器的性能优于传统的机器学习分类器。此外,特征工程还能区分智能手机和智能手表的活动检测能力。为了改进人类基本活动的分类,即将推出的机制为各种传感器和可穿戴设备的识别提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EAI Endorsed Transactions on Pervasive Health and Technology
EAI Endorsed Transactions on Pervasive Health and Technology Computer Science-Computer Science (miscellaneous)
CiteScore
3.50
自引率
0.00%
发文量
14
审稿时长
10 weeks
期刊最新文献
Thermal image processing system to monitor muscle warm-up in students prior to their sports activities Individual Intervention and Assessment of Students' Physical Fitness Based on the "Three Precision" Applet and Mixed Strategy Optimised CNN Networks Research on Portable Intelligent Terminal and APP Application Analysis and Intelligent Monitoring Method of College Students' Health Status Research on 2D Animation Simulation Based on Artificial Intelligence and Biomechanical Modeling Swift Diagnose: A High-Performance Shallow Convolutional Neural Network for Rapid and Reliable SARS-COV-2 Induced Pneumonia Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1