Qualitative Evaluation for Asphalt Binder Modified with SBS Polymer

Q3 Environmental Science Tikrit Journal of Engineering Sciences Pub Date : 2023-11-27 DOI:10.25130/tjes.30.4.10
Rania I. Al-Nawasir, B. Al-Humeidawi
{"title":"Qualitative Evaluation for Asphalt Binder Modified with SBS Polymer","authors":"Rania I. Al-Nawasir, B. Al-Humeidawi","doi":"10.25130/tjes.30.4.10","DOIUrl":null,"url":null,"abstract":"Solutions for safer, more durable infrastructure are required in light of increasing traffic and severe weather in Iraq. The most significant road conservation and maintenance challenges are the pavement's low resistance to dynamic loads and short service life. As a result, vast sums of money are spent annually to enhance the road service capacities in Iraq. Thermoplastic electrometric polymers for bitumen modification create long-lasting, cost-effective roadways. This study aims to determine how the mechanical properties of neat asphalt binder change when styrene butadiene styrene (SBS) is added as a modifier. The current research investigates adding three percentages of SBS (3, 5, and 7% of the weight of bitumen). Both neat and polymer-modified bitumen (PMB) were subjected to a series of physical laboratory and Superpave tests, including a dynamic shear rheometer tester (DSR) and a storage stability test. In addition, a chemical analysis test was conducted to identify any change in the neat binder chemical composition due to the addition of SBS polymer. The results indicated that 5% of SBS polymer was the optimum addition percentage to the local asphalt in Iraq. Additionally, it reduced the susceptibility of bitumen to temperature changes and enhanced its characteristics in all laboratory tests. The obtained PMB significantly improved rutting and fatigue factors compared to the neat asphalt binder. Based on the DSR tester and the storage stability test, the ratio of 5% SBS met the requirements of class PG76-10, used in the central and southern governorates of Iraq. Using SBS polymer on the surface course in Iraq reduces road damage due to the scorching summer sun, reduces the likelihood of rutting and fatigue cracking, and works well in hot regions, resulting in roads that last longer, provide comfortable riding, and require less maintenance.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.30.4.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Solutions for safer, more durable infrastructure are required in light of increasing traffic and severe weather in Iraq. The most significant road conservation and maintenance challenges are the pavement's low resistance to dynamic loads and short service life. As a result, vast sums of money are spent annually to enhance the road service capacities in Iraq. Thermoplastic electrometric polymers for bitumen modification create long-lasting, cost-effective roadways. This study aims to determine how the mechanical properties of neat asphalt binder change when styrene butadiene styrene (SBS) is added as a modifier. The current research investigates adding three percentages of SBS (3, 5, and 7% of the weight of bitumen). Both neat and polymer-modified bitumen (PMB) were subjected to a series of physical laboratory and Superpave tests, including a dynamic shear rheometer tester (DSR) and a storage stability test. In addition, a chemical analysis test was conducted to identify any change in the neat binder chemical composition due to the addition of SBS polymer. The results indicated that 5% of SBS polymer was the optimum addition percentage to the local asphalt in Iraq. Additionally, it reduced the susceptibility of bitumen to temperature changes and enhanced its characteristics in all laboratory tests. The obtained PMB significantly improved rutting and fatigue factors compared to the neat asphalt binder. Based on the DSR tester and the storage stability test, the ratio of 5% SBS met the requirements of class PG76-10, used in the central and southern governorates of Iraq. Using SBS polymer on the surface course in Iraq reduces road damage due to the scorching summer sun, reduces the likelihood of rutting and fatigue cracking, and works well in hot regions, resulting in roads that last longer, provide comfortable riding, and require less maintenance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SBS 聚合物改性沥青粘结剂的定性评估
鉴于伊拉克的交通流量不断增加,气候恶劣,需要有更安全、更耐用的基础设施解决方案。道路养护和维修面临的最大挑战是路面对动态荷载的抵抗力低和使用寿命短。因此,每年都需要花费大量资金来提高伊拉克的道路服务能力。用于沥青改性的热塑性电测聚合物可创造出使用寿命长、成本效益高的道路。本研究旨在确定添加苯乙烯-丁二烯-苯乙烯(SBS)作为改性剂后,纯沥青粘结剂的机械性能会发生怎样的变化。目前的研究调查了添加 SBS 的三个百分比(占沥青重量的 3%、5% 和 7%)。纯沥青和聚合物改性沥青(PMB)都经过了一系列物理实验室和 Superpave 测试,包括动态剪切流变仪(DSR)和储存稳定性测试。此外,还进行了化学分析测试,以确定由于添加了 SBS 聚合物,纯粘结剂的化学成分是否发生了变化。结果表明,5% 的 SBS 聚合物是伊拉克当地沥青的最佳添加比例。此外,它还降低了沥青对温度变化的敏感性,并增强了其在所有实验室测试中的特性。与纯沥青粘结剂相比,获得的 PMB 可明显改善车辙和疲劳系数。根据 DSR 测试仪和储存稳定性测试,5% SBS 的配比符合伊拉克中部和南部省份使用的 PG76-10 等级的要求。在伊拉克的面层中使用 SBS 聚合物可减少因夏日烈日造成的路面损坏,降低车辙和疲劳开裂的可能性,在炎热地区也能很好地发挥作用,从而使路面使用寿命更长、乘坐更舒适、所需的维护更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
56
审稿时长
8 weeks
期刊最新文献
Generative AI Chatbot for Engineering Scientific Journal MnO2 Nano Particles Modified a Double Layer Cathode Reactor for an Efficient Removal of DBT in Diesel Underwater Wireless Optical Communication for IOT using Coding MIMO Diversity Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study Cascaded H–Bridge Multilevel Inverter: Review of Topologies and Pulse Width Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1