An Optofluidic System for Monitoring Fluorescently Activated Protein Biomarkers

IF 3.4 Q2 CHEMISTRY, ANALYTICAL Analysis & sensing Pub Date : 2023-11-27 DOI:10.1002/anse.202300064
Md Fahim Al Fattah, Hesam Abouali, Seied Ali Hosseini, Jian Yin, Asif Abdullah Khan, Hamid Aghamohammadi, Prof. Mahla Poudineh, Prof. Dayan Ban
{"title":"An Optofluidic System for Monitoring Fluorescently Activated Protein Biomarkers","authors":"Md Fahim Al Fattah,&nbsp;Hesam Abouali,&nbsp;Seied Ali Hosseini,&nbsp;Jian Yin,&nbsp;Asif Abdullah Khan,&nbsp;Hamid Aghamohammadi,&nbsp;Prof. Mahla Poudineh,&nbsp;Prof. Dayan Ban","doi":"10.1002/anse.202300064","DOIUrl":null,"url":null,"abstract":"<p>The ability to monitor protein biomarkers at clinically relevant concentrations is a powerful approach that provides insights into health status. The synergistic combination of microfluidics and photonics (optofluidic) has emerged as a new means to achieve this capability for detection and manipulation of biological samples. Here in this work, we demonstrate an optofluidic device which integrates the detection and the particle-focusing components to facilitate on-chip measurement of protein levels. With this design, we use a laser-induced fluorescence technique for the direct measurement of protein levels on magnetic bead complexes tagged with fluorescein isothiocyanate (FITC) fluorophore. The developed system was employed for the detection of human immunoglobulin G (IgG) as a model protein within a range of 0–20 μg/mL, showing an ability to resolve the fluorescence signal from different IgG concentrations down to 5.4 nM (0.81 μg/mL). The selectivity in detecting specific IgG target was tested by comparing the fluorescence signal levels from other interfering proteins such as bovine serum albumin (BSA) and human IgM. Although our system was designed for detecting IgG protein, this optofluidic device can be a powerful platform for the rapid detection of a diverse range of biomarkers, including viral pathogens retaining adequate signal sensitivity and selectivity.</p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"4 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to monitor protein biomarkers at clinically relevant concentrations is a powerful approach that provides insights into health status. The synergistic combination of microfluidics and photonics (optofluidic) has emerged as a new means to achieve this capability for detection and manipulation of biological samples. Here in this work, we demonstrate an optofluidic device which integrates the detection and the particle-focusing components to facilitate on-chip measurement of protein levels. With this design, we use a laser-induced fluorescence technique for the direct measurement of protein levels on magnetic bead complexes tagged with fluorescein isothiocyanate (FITC) fluorophore. The developed system was employed for the detection of human immunoglobulin G (IgG) as a model protein within a range of 0–20 μg/mL, showing an ability to resolve the fluorescence signal from different IgG concentrations down to 5.4 nM (0.81 μg/mL). The selectivity in detecting specific IgG target was tested by comparing the fluorescence signal levels from other interfering proteins such as bovine serum albumin (BSA) and human IgM. Although our system was designed for detecting IgG protein, this optofluidic device can be a powerful platform for the rapid detection of a diverse range of biomarkers, including viral pathogens retaining adequate signal sensitivity and selectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测荧光活化蛋白生物标记物的光流体系统
以临床相关浓度监测蛋白质生物标志物的能力是一种能够深入了解健康状况的强大方法。微流控技术与光子学(光流控)的协同结合已成为实现这种生物样本检测和操作能力的新手段。在这项工作中,我们展示了一种光流体设备,它集成了检测和粒子聚焦组件,便于在芯片上测量蛋白质水平。通过这种设计,我们利用激光诱导荧光技术直接测量了带有异硫氰酸荧光素(FITC)荧光团的磁珠复合物上的蛋白质水平。所开发的系统用于检测 0-20 µg/mL 范围内的人免疫球蛋白 G (IgG)。通过比较其他干扰蛋白(如牛血清白蛋白(BSA)和人 IgM)的荧光信号水平,测试了检测特异性 IgG 目标的选择性。虽然我们的系统是为检测 IgG 蛋白而设计的,但这种光流体设备可以成为快速检测各种生物标记物(包括病毒病原体)的强大平台,并保持足够的信号灵敏度和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine (Anal. Sens. 6/2024) Front Cover: Anal. Sens. 5/2024) Pioneering Sensing Technologies Using Borophene-Based Composite/Hybrid Electrochemical Biosensors for Health Monitoring: A Perspective Signal Amplification by Reversible Exchange and its Translation to Hyperpolarized Magnetic Resonance Imaging in Biomedicine Front Cover: (Anal. Sens. 4/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1