EXPLORING PHYSICS-INFORMED NEURAL NETWORKS FOR SOLVING BOUNDARY LAYER PROBLEMS

Muchamad Harry Yudha Pratama, Agus Yodi Gunawan
{"title":"EXPLORING PHYSICS-INFORMED NEURAL NETWORKS FOR SOLVING BOUNDARY LAYER PROBLEMS","authors":"Muchamad Harry Yudha Pratama, Agus Yodi Gunawan","doi":"10.14710/jfma.v6i2.20084","DOIUrl":null,"url":null,"abstract":"In this paper, we explore a cutting-edge technique called as Physics- Informed Neural Networks (PINN) to tackle boundary layer problems. We here examine four different cases of boundary layers of second-order ODE: a linear ODEwith constant coefficients, a nonlinear ODE with homogeneous boundary conditions, an ODE with non-constant coefficients, and an ODE featuring multiple boundary layers. We adapt the line of PINN technique for handling those problems, and our results show that the accuracy of the resulted solutions depends on how we choose the most reliable and robust activation functions when designing the architecture of the PINN. Beside that, through our explorations, we aim to improve our understanding on how the PINN technique works better for boundary layer problems. Especially, the use of the SiLU (Sigmoid-Weighted Linear Unit) activation function in PINN has proven to be particularly remarkable in handling our boundary layer problems.","PeriodicalId":359074,"journal":{"name":"Journal of Fundamental Mathematics and Applications (JFMA)","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental Mathematics and Applications (JFMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jfma.v6i2.20084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore a cutting-edge technique called as Physics- Informed Neural Networks (PINN) to tackle boundary layer problems. We here examine four different cases of boundary layers of second-order ODE: a linear ODEwith constant coefficients, a nonlinear ODE with homogeneous boundary conditions, an ODE with non-constant coefficients, and an ODE featuring multiple boundary layers. We adapt the line of PINN technique for handling those problems, and our results show that the accuracy of the resulted solutions depends on how we choose the most reliable and robust activation functions when designing the architecture of the PINN. Beside that, through our explorations, we aim to improve our understanding on how the PINN technique works better for boundary layer problems. Especially, the use of the SiLU (Sigmoid-Weighted Linear Unit) activation function in PINN has proven to be particularly remarkable in handling our boundary layer problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索解决边界层问题的物理信息神经网络
在本文中,我们探索了一种被称为物理信息神经网络(PINN)的尖端技术来解决边界层问题。我们在此研究了二阶 ODE 边界层的四种不同情况:具有常数系数的线性 ODE、具有同质边界条件的非线性 ODE、具有非常数系数的 ODE 和具有多个边界层的 ODE。我们采用 PINN 技术来处理这些问题,结果表明,求解结果的准确性取决于我们在设计 PINN 架构时如何选择最可靠、最稳健的激活函数。此外,通过我们的探索,我们旨在加深对 PINN 技术如何更好地处理边界层问题的理解。特别是在 PINN 中使用 SiLU(Sigmoid-Weighted Linear Unit,西格玛加权线性单元)激活函数,在处理边界层问题时效果尤为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BACKTRACKING APPROACH FOR SOLVING PATH PUZZLES MATHEMATICAL MODEL OF MEASLES DISEASE SPREAD WITH TWO-DOSE VACCINATION AND TREATMENT FROZEN INITIAL LIABILITY METHOD TO DETERMINE NORMAL COST OF PENSION FUND WITH VASICEK INTEREST RATE MODEL TOPOLOGY OF QUASI-PSEUDOMETRIC SPACES AND CONTINUOUS LINEAR OPERATOR ON ASYMMETRIC NORMED SPACES FLOWER POLLINATION ALGORITHM (FPA): COMPARING SWITCH PROBABILITY BETWEEN CONSTANT 0.8 AND DOUBLE EXPONENTGUNAKAN DOUBLE EXPONENT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1