Gabriel Alexandru Constantin, M. Munteanu, G. Voicu, G. Paraschiv, E. Ştefan
{"title":"An Analysis of Air Flow in the Baking Chamber of a Tunnel-Type Electric Oven","authors":"Gabriel Alexandru Constantin, M. Munteanu, G. Voicu, G. Paraschiv, E. Ştefan","doi":"10.3390/computation11120236","DOIUrl":null,"url":null,"abstract":"The baking process in tunnel ovens can be influenced by many parameters. Among these, the most important can be considered as: the baking time, the volume of dough pieces, the texture and humidity of the dough, the distribution of temperature inside the oven, as well as the flow of air currents applied in the baking chamber. In order to obtain a constant quality of bakery or pastry products, and for the efficient operation of the oven, it is necessary that the solution made by the designers be subjected to modelling, simulation and analysis processes, before their manufacture, and in this sense it can be applied to the Computational Fluid Dynamics (CFD) numerical simulation tool. In this study, we made an analysis of the air flow inside the baking chamber of an oven. The analyzed oven was used very frequently on the pastry lines. After performing the modelling and simulation, the temperature distribution inside the oven was obtained in the longitudinal and transverse planes. For the experimental validation of the temperatures obtained in the computer-assisted simulation, the temperatures inside the analyzed electric oven were measured. The measured temperatures validated the simulation results with a maximum error of 7.6%.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11120236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The baking process in tunnel ovens can be influenced by many parameters. Among these, the most important can be considered as: the baking time, the volume of dough pieces, the texture and humidity of the dough, the distribution of temperature inside the oven, as well as the flow of air currents applied in the baking chamber. In order to obtain a constant quality of bakery or pastry products, and for the efficient operation of the oven, it is necessary that the solution made by the designers be subjected to modelling, simulation and analysis processes, before their manufacture, and in this sense it can be applied to the Computational Fluid Dynamics (CFD) numerical simulation tool. In this study, we made an analysis of the air flow inside the baking chamber of an oven. The analyzed oven was used very frequently on the pastry lines. After performing the modelling and simulation, the temperature distribution inside the oven was obtained in the longitudinal and transverse planes. For the experimental validation of the temperatures obtained in the computer-assisted simulation, the temperatures inside the analyzed electric oven were measured. The measured temperatures validated the simulation results with a maximum error of 7.6%.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.