Application of Smart Insoles for Recognition of Activities of Daily Living: A Systematic Review

Luigi D’Arco, Graham McCalmont, Haiying Wang, Huiru Zheng
{"title":"Application of Smart Insoles for Recognition of Activities of Daily Living: A Systematic Review","authors":"Luigi D’Arco, Graham McCalmont, Haiying Wang, Huiru Zheng","doi":"10.1145/3633785","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the increasing literature on using smart insoles in health and well-being, and yet, their capability of daily living activity recognition has not been reviewed. This paper addressed this need and provided a systematic review of smart insole-based systems in the recognition of Activities of Daily Living (ADLs). The review followed the PRISMA guidelines, assessing the sensing elements used, the participants involved, the activities recognised, and the algorithms employed. The findings demonstrate the feasibility of using smart insoles for recognising ADLs, showing their high performance in recognising ambulation and physical activities involving the lower body, ranging from 70% to 99.8% of Accuracy, with 13 studies over 95%. The preferred solutions have been those including machine learning. A lack of existing publicly available datasets has been identified, and the majority of the studies were conducted in controlled environments. Furthermore, no studies assessed the impact of different sampling frequencies during data collection, and a trade-off between comfort and performance has been identified between the solutions. In conclusion, real-life applications were investigated showing the benefits of smart insoles over other solutions and placing more emphasis on the capabilities of smart insoles.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"49 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3633785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have witnessed the increasing literature on using smart insoles in health and well-being, and yet, their capability of daily living activity recognition has not been reviewed. This paper addressed this need and provided a systematic review of smart insole-based systems in the recognition of Activities of Daily Living (ADLs). The review followed the PRISMA guidelines, assessing the sensing elements used, the participants involved, the activities recognised, and the algorithms employed. The findings demonstrate the feasibility of using smart insoles for recognising ADLs, showing their high performance in recognising ambulation and physical activities involving the lower body, ranging from 70% to 99.8% of Accuracy, with 13 studies over 95%. The preferred solutions have been those including machine learning. A lack of existing publicly available datasets has been identified, and the majority of the studies were conducted in controlled environments. Furthermore, no studies assessed the impact of different sampling frequencies during data collection, and a trade-off between comfort and performance has been identified between the solutions. In conclusion, real-life applications were investigated showing the benefits of smart insoles over other solutions and placing more emphasis on the capabilities of smart insoles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用智能鞋垫识别日常生活活动:系统回顾
近年来,有关智能鞋垫在健康和福祉领域应用的文献越来越多,然而,有关其日常生活活动识别能力的研究却鲜有问世。本文针对这一需求,对基于智能鞋垫的日常生活活动(ADL)识别系统进行了系统综述。综述遵循了 PRISMA 准则,评估了所使用的传感元件、参与人员、所识别的活动以及所采用的算法。研究结果表明了使用智能鞋垫识别日常生活活动的可行性,显示了智能鞋垫在识别涉及下半身的行走和体力活动方面的高性能,准确率从 70% 到 99.8%,其中有 13 项研究的准确率超过 95%。包括机器学习在内的解决方案一直是首选。目前已发现缺乏公开可用的数据集,而且大多数研究都是在受控环境中进行的。此外,没有研究对数据采集过程中不同采样频率的影响进行评估,而且在各种解决方案之间还存在舒适度和性能之间的权衡问题。总之,对实际应用的调查显示了智能鞋垫相对于其他解决方案的优势,并更加强调了智能鞋垫的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1