{"title":"Modelling the Quantum Capacitance of Single-layer and Bilayer Graphene","authors":"Yousra Ammour, R. Remmouche, Rachid Fates","doi":"10.5755/j02.ms.34129","DOIUrl":null,"url":null,"abstract":"In this paper, we report the modelling of quantum capacitance in both single-layer and bilayer graphene devices to investigate the temperature dependence. The model includes the existence of electron and hole puddles due to local fluctuations of the potential, which is taken into account with the possibility of finite lifetimes of electronic states to calculate the quantum capacitance using the Gaussian distribution. The results indicate that the simulations are in agreement with the experimental measurements, which proves the accuracy of the proposed model. On the other hand, temperature dependence around the charge neutrality point has been reported for both single and bilayer graphene.","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"64 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.34129","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report the modelling of quantum capacitance in both single-layer and bilayer graphene devices to investigate the temperature dependence. The model includes the existence of electron and hole puddles due to local fluctuations of the potential, which is taken into account with the possibility of finite lifetimes of electronic states to calculate the quantum capacitance using the Gaussian distribution. The results indicate that the simulations are in agreement with the experimental measurements, which proves the accuracy of the proposed model. On the other hand, temperature dependence around the charge neutrality point has been reported for both single and bilayer graphene.
期刊介绍:
Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.