Seyed Mostafa Hosseini, Mohammad Eslami, Mehdi Javanmard
{"title":"Nonlinear parametric generation in a four-level inverted-type quantum well nanostructure","authors":"Seyed Mostafa Hosseini, Mohammad Eslami, Mehdi Javanmard","doi":"10.1142/s0217984924501070","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an innovative semiconductor quantum well (SQW) nanostructure, which exhibits a unique four-level configuration arranged in an inverted Y-shape. This configuration enables interaction with three laser fields and demonstrates the intriguing nonlinear phenomenon of parametric generation. Our investigation delves into a wide range of parametric conditions, aiming to understand the profound impact of various system parameters on the generation and propagation of new light fields within this groundbreaking nanostructure. By employing a combination of analytical and numerical methods, we not only reveal the potential for precise manipulation of coherence among energy levels but also showcase its practical implications — high-efficiency and tunability in the parametric generation process. This pioneering scheme represents a significant advancement in the field of SQW structures, bridging the gap between theoretical exploration and practical application. Our findings promise exciting prospects for the development of novel light sources and optical devices based on SQW structures, thereby pushing the boundaries of what is achievable in various applications and setting new standards for the state-of-the-art in this domain.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"42 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce an innovative semiconductor quantum well (SQW) nanostructure, which exhibits a unique four-level configuration arranged in an inverted Y-shape. This configuration enables interaction with three laser fields and demonstrates the intriguing nonlinear phenomenon of parametric generation. Our investigation delves into a wide range of parametric conditions, aiming to understand the profound impact of various system parameters on the generation and propagation of new light fields within this groundbreaking nanostructure. By employing a combination of analytical and numerical methods, we not only reveal the potential for precise manipulation of coherence among energy levels but also showcase its practical implications — high-efficiency and tunability in the parametric generation process. This pioneering scheme represents a significant advancement in the field of SQW structures, bridging the gap between theoretical exploration and practical application. Our findings promise exciting prospects for the development of novel light sources and optical devices based on SQW structures, thereby pushing the boundaries of what is achievable in various applications and setting new standards for the state-of-the-art in this domain.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.