D. Ryan, Sophie Musset, H. Reid, Säm Krucker, A. Battaglia, Eric Bréelle, Claude Chapron, H. Collier, J. Dahlin, C. Denker, E. Dickson, Peter T. Gallagher, I. Hannah, N. Jeffrey, J. Kašparová, E. Kontar, P. Laurent, S. Maloney, P. Massa, A. Massone, Tomasz Mrozek, D. Pailot, M. Pallu, M. Pesce-Rollins, Michele Piana, Illya Plotnikov, A. Rouillard, Albert Y. Shih, David Smith, M. Stȩślicki, Muriel Z. Stiefel, A. Warmuth, Meetu Verma, Astrid M. Veronig, N. Vilmer, C. Vocks, A. Volpara
{"title":"The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept","authors":"D. Ryan, Sophie Musset, H. Reid, Säm Krucker, A. Battaglia, Eric Bréelle, Claude Chapron, H. Collier, J. Dahlin, C. Denker, E. Dickson, Peter T. Gallagher, I. Hannah, N. Jeffrey, J. Kašparová, E. Kontar, P. Laurent, S. Maloney, P. Massa, A. Massone, Tomasz Mrozek, D. Pailot, M. Pallu, M. Pesce-Rollins, Michele Piana, Illya Plotnikov, A. Rouillard, Albert Y. Shih, David Smith, M. Stȩślicki, Muriel Z. Stiefel, A. Warmuth, Meetu Verma, Astrid M. Veronig, N. Vilmer, C. Vocks, A. Volpara","doi":"10.3390/aerospace10120985","DOIUrl":null,"url":null,"abstract":"Models of particle acceleration in solar eruptive events suggest that roughly equal energy may go into accelerating electrons and ions. However, while previous solar X-ray spectroscopic imagers have transformed our understanding of electron acceleration, only one resolved image of γ-ray emission from solar accelerated ions has ever been produced. This paper outlines a new satellite instrument concept—the large imaging spectrometer for solar accelerated nuclei (LISSAN)—with the capability not only to observe hundreds of events over its lifetime, but also to capture multiple images per event, thereby imaging the dynamics of solar accelerated ions for the first time. LISSAN provides spectroscopic imaging at photon energies of 40 keV–100 MeV on timescales of ≲10 s with greater sensitivity and imaging capability than its predecessors. This is achieved by deploying high-resolution scintillator detectors and indirect Fourier imaging techniques. LISSAN is suitable for inclusion in a multi-instrument platform such as an ESA M-class mission or as a smaller standalone mission. Without the observations that LISSAN can provide, our understanding of solar particle acceleration, and hence the space weather events with which it is often associated, cannot be complete.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"47 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10120985","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Models of particle acceleration in solar eruptive events suggest that roughly equal energy may go into accelerating electrons and ions. However, while previous solar X-ray spectroscopic imagers have transformed our understanding of electron acceleration, only one resolved image of γ-ray emission from solar accelerated ions has ever been produced. This paper outlines a new satellite instrument concept—the large imaging spectrometer for solar accelerated nuclei (LISSAN)—with the capability not only to observe hundreds of events over its lifetime, but also to capture multiple images per event, thereby imaging the dynamics of solar accelerated ions for the first time. LISSAN provides spectroscopic imaging at photon energies of 40 keV–100 MeV on timescales of ≲10 s with greater sensitivity and imaging capability than its predecessors. This is achieved by deploying high-resolution scintillator detectors and indirect Fourier imaging techniques. LISSAN is suitable for inclusion in a multi-instrument platform such as an ESA M-class mission or as a smaller standalone mission. Without the observations that LISSAN can provide, our understanding of solar particle acceleration, and hence the space weather events with which it is often associated, cannot be complete.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.