Ofelia Maldonado-Santiago, J. Robles-Ocampo, Eduardo Gálvez, P. Y. Sevilla-Camacho, Sergio de la Cruz, J. Rodríguez-Reséndíz, Edwin Hernández
{"title":"Bending Behavior Analysis of Box Beams with the Reinforcement of Composite Materials for Wind Turbine Blades","authors":"Ofelia Maldonado-Santiago, J. Robles-Ocampo, Eduardo Gálvez, P. Y. Sevilla-Camacho, Sergio de la Cruz, J. Rodríguez-Reséndíz, Edwin Hernández","doi":"10.3390/fib11120099","DOIUrl":null,"url":null,"abstract":"Wind turbine blades in excessive wind conditions present extreme deflection problems. For this reason, an analysis of the structural response of composite reinforced box beams is developed. For this purpose, reinforced box beams were fabricated to improve the bending strength in the flapwise direction of the wind turbine blades. The box beams were analyzed with three-dimensional models using the Finite Element Method (FEM) and validated with bending tests at four-points and two-points. The box beam meets the characteristics of lightness and mechanical strength. Experimental four-point bending results showed that reinforced cross-sections decrease displacements by 30.09% and increase their stiffness to 43.41% for a box beam without structural reinforcement. In addition, the two-point bending results showed a difference of 18.98% between the displacements of the beams with structural reinforcements. In the FEM analysis, a maximum error of 11.24% was obtained when correlating the maximum displacement value with the experimental results of the beams.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"64 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11120099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wind turbine blades in excessive wind conditions present extreme deflection problems. For this reason, an analysis of the structural response of composite reinforced box beams is developed. For this purpose, reinforced box beams were fabricated to improve the bending strength in the flapwise direction of the wind turbine blades. The box beams were analyzed with three-dimensional models using the Finite Element Method (FEM) and validated with bending tests at four-points and two-points. The box beam meets the characteristics of lightness and mechanical strength. Experimental four-point bending results showed that reinforced cross-sections decrease displacements by 30.09% and increase their stiffness to 43.41% for a box beam without structural reinforcement. In addition, the two-point bending results showed a difference of 18.98% between the displacements of the beams with structural reinforcements. In the FEM analysis, a maximum error of 11.24% was obtained when correlating the maximum displacement value with the experimental results of the beams.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins