{"title":"Techniques and Trade-Offs in Function Inlining Optimization","authors":"Priya Gupta, Aditya Jha, Brinda Gupta, Kime Sumpi, Sabyasachi Sahoo, Mukkoti Maruthi Venkata Chalapathi","doi":"10.4108/eetsis.4453","DOIUrl":null,"url":null,"abstract":"Function inlining is a critical optimization technique used by compilers to improve program performance by replacing a function call with the body of the function and eliminating the overhead associated with function calls. However, the decision of when to inline functions and when not to is a nontrivial problem due to interactions with the rest of the compiler pipeline. Incorrect inlining decisions can cause runtime performance degradation, making this problem a crucial one to study. This paper reviews the different techniques used to optimize function inlining, including simple textual substitution, profile-guided inlining, interprocedural optimization, partial inlining, speculative inlining, and advanced techniques such as indirect call optimizations. Each technique has its strengths, weaknesses, and trade-offs, and ongoing research is exploring ways to overcome these challenges. Optimizing function inlining is a complex problem, and different techniques offer different tradeoffs. Further research to improve the performance of function inlining while minimizing any potential drawbacks could be pursued based on this paper.","PeriodicalId":502678,"journal":{"name":"ICST Transactions on Scalable Information Systems","volume":"189 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICST Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.4453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Function inlining is a critical optimization technique used by compilers to improve program performance by replacing a function call with the body of the function and eliminating the overhead associated with function calls. However, the decision of when to inline functions and when not to is a nontrivial problem due to interactions with the rest of the compiler pipeline. Incorrect inlining decisions can cause runtime performance degradation, making this problem a crucial one to study. This paper reviews the different techniques used to optimize function inlining, including simple textual substitution, profile-guided inlining, interprocedural optimization, partial inlining, speculative inlining, and advanced techniques such as indirect call optimizations. Each technique has its strengths, weaknesses, and trade-offs, and ongoing research is exploring ways to overcome these challenges. Optimizing function inlining is a complex problem, and different techniques offer different tradeoffs. Further research to improve the performance of function inlining while minimizing any potential drawbacks could be pursued based on this paper.