Comparison of active and passive back-support exoskeletons for construction work: range of motion, discomfort, usability, exertion and cognitive load assessments
{"title":"Comparison of active and passive back-support exoskeletons for construction work: range of motion, discomfort, usability, exertion and cognitive load assessments","authors":"Akinwale Okunola, A. Akanmu, A. Yusuf","doi":"10.1108/sasbe-06-2023-0147","DOIUrl":null,"url":null,"abstract":"PurposeLow back disorders are more predominant among construction trade workers than their counterparts in other industry sectors. Floor layers are among the top artisans that are severely affected by low back disorders. Exoskeletons are increasingly being perceived as ergonomic solutions. This study aims to compare the efficacy of passive and active back-support exoskeletons by measuring range of motion, perceived discomfort, usability, perceived rate of exertion and cognitive load during a simulated flooring task experiment.Design/methodology/approachIn this study eight participants were engaged in a repetitive timber flooring task performed with passive and active back-support exoskeletons. Subjective and objective data were collected to assess the risks associated with using both exoskeletons. Descriptive statistics were used for analysis. Scheirer-Ray-Hare test and Wilcoxon signed-rank test were adopted to compare the exoskeleton conditions.FindingsThe results show no significant differences in the range of motion (except for a lifting cycle), perceived level of discomfort and perceived level of exertion between the two exoskeletons. Significant difference in overall cognitive load was observed. The usability results show that the active back-support exoskeleton made task execution easier with less restriction on movement.Research limitations/implicationsThe flooring task is simulated in a laboratory environment with only eight male participants.Originality/valueThis study contributes to the scarce body of knowledge on the usage comparison of passive and active exoskeletons for construction work.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":"17 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-06-2023-0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeLow back disorders are more predominant among construction trade workers than their counterparts in other industry sectors. Floor layers are among the top artisans that are severely affected by low back disorders. Exoskeletons are increasingly being perceived as ergonomic solutions. This study aims to compare the efficacy of passive and active back-support exoskeletons by measuring range of motion, perceived discomfort, usability, perceived rate of exertion and cognitive load during a simulated flooring task experiment.Design/methodology/approachIn this study eight participants were engaged in a repetitive timber flooring task performed with passive and active back-support exoskeletons. Subjective and objective data were collected to assess the risks associated with using both exoskeletons. Descriptive statistics were used for analysis. Scheirer-Ray-Hare test and Wilcoxon signed-rank test were adopted to compare the exoskeleton conditions.FindingsThe results show no significant differences in the range of motion (except for a lifting cycle), perceived level of discomfort and perceived level of exertion between the two exoskeletons. Significant difference in overall cognitive load was observed. The usability results show that the active back-support exoskeleton made task execution easier with less restriction on movement.Research limitations/implicationsThe flooring task is simulated in a laboratory environment with only eight male participants.Originality/valueThis study contributes to the scarce body of knowledge on the usage comparison of passive and active exoskeletons for construction work.