{"title":"The Contribution of Low-Carbon Energy Technologies to Climate Resilience","authors":"L. Proskuryakova","doi":"10.3390/cli11120231","DOIUrl":null,"url":null,"abstract":"The UN vision of climate resilience contains three independent outcomes: resilient people and livelihoods, resilient business and economies, and resilient environmental systems. This article analyzes the positive contributions of low-carbon energy technologies to climate resilience by reviewing and critically assessing the existing pool of studies published by researchers and international organizations that offer comparable data (quantitative indicators). Compilation, critical analysis, and literature review methods are used to develop a methodological framework that is in line with the UN vision of climate resilience and makes it possible to compare the input of low-carbon energy technologies climate resilience by unit of output or during their lifecycle. The framework is supported by the three relevant concepts—energy trilemma, sharing economy/material footprint, and Planetary Pressures-Adjusted Human Development Index. The study identifies indicators that fit the suggested framework and for which the data are available: total material requirement (TMR), present and future levelized cost of electricity (LCOE) without subsidies, CO2 emissions by fuel or industry, lifecycle CO2-equivalent emissions, and mortality rates from accidents and air pollution. They are discussed in the paper with a focus on multi-country and global studies that allow comparisons across different geographies. The findings may be used by decision-makers when prioritizing the support of low-carbon technologies and planning the designs of energy systems.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11120231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The UN vision of climate resilience contains three independent outcomes: resilient people and livelihoods, resilient business and economies, and resilient environmental systems. This article analyzes the positive contributions of low-carbon energy technologies to climate resilience by reviewing and critically assessing the existing pool of studies published by researchers and international organizations that offer comparable data (quantitative indicators). Compilation, critical analysis, and literature review methods are used to develop a methodological framework that is in line with the UN vision of climate resilience and makes it possible to compare the input of low-carbon energy technologies climate resilience by unit of output or during their lifecycle. The framework is supported by the three relevant concepts—energy trilemma, sharing economy/material footprint, and Planetary Pressures-Adjusted Human Development Index. The study identifies indicators that fit the suggested framework and for which the data are available: total material requirement (TMR), present and future levelized cost of electricity (LCOE) without subsidies, CO2 emissions by fuel or industry, lifecycle CO2-equivalent emissions, and mortality rates from accidents and air pollution. They are discussed in the paper with a focus on multi-country and global studies that allow comparisons across different geographies. The findings may be used by decision-makers when prioritizing the support of low-carbon technologies and planning the designs of energy systems.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.