The Contribution of Low-Carbon Energy Technologies to Climate Resilience

IF 3 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Climate Pub Date : 2023-11-21 DOI:10.3390/cli11120231
L. Proskuryakova
{"title":"The Contribution of Low-Carbon Energy Technologies to Climate Resilience","authors":"L. Proskuryakova","doi":"10.3390/cli11120231","DOIUrl":null,"url":null,"abstract":"The UN vision of climate resilience contains three independent outcomes: resilient people and livelihoods, resilient business and economies, and resilient environmental systems. This article analyzes the positive contributions of low-carbon energy technologies to climate resilience by reviewing and critically assessing the existing pool of studies published by researchers and international organizations that offer comparable data (quantitative indicators). Compilation, critical analysis, and literature review methods are used to develop a methodological framework that is in line with the UN vision of climate resilience and makes it possible to compare the input of low-carbon energy technologies climate resilience by unit of output or during their lifecycle. The framework is supported by the three relevant concepts—energy trilemma, sharing economy/material footprint, and Planetary Pressures-Adjusted Human Development Index. The study identifies indicators that fit the suggested framework and for which the data are available: total material requirement (TMR), present and future levelized cost of electricity (LCOE) without subsidies, CO2 emissions by fuel or industry, lifecycle CO2-equivalent emissions, and mortality rates from accidents and air pollution. They are discussed in the paper with a focus on multi-country and global studies that allow comparisons across different geographies. The findings may be used by decision-makers when prioritizing the support of low-carbon technologies and planning the designs of energy systems.","PeriodicalId":37615,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11120231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The UN vision of climate resilience contains three independent outcomes: resilient people and livelihoods, resilient business and economies, and resilient environmental systems. This article analyzes the positive contributions of low-carbon energy technologies to climate resilience by reviewing and critically assessing the existing pool of studies published by researchers and international organizations that offer comparable data (quantitative indicators). Compilation, critical analysis, and literature review methods are used to develop a methodological framework that is in line with the UN vision of climate resilience and makes it possible to compare the input of low-carbon energy technologies climate resilience by unit of output or during their lifecycle. The framework is supported by the three relevant concepts—energy trilemma, sharing economy/material footprint, and Planetary Pressures-Adjusted Human Development Index. The study identifies indicators that fit the suggested framework and for which the data are available: total material requirement (TMR), present and future levelized cost of electricity (LCOE) without subsidies, CO2 emissions by fuel or industry, lifecycle CO2-equivalent emissions, and mortality rates from accidents and air pollution. They are discussed in the paper with a focus on multi-country and global studies that allow comparisons across different geographies. The findings may be used by decision-makers when prioritizing the support of low-carbon technologies and planning the designs of energy systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低碳能源技术对气候复原力的贡献
联合国的气候复原力愿景包含三个独立的成果:具有复原力的人民和生计、具有复原力的企业和经济以及具有复原力的环境系统。本文通过回顾和批判性评估由研究人员和国际组织发表的、可提供可比数据(定量指标)的现有研究,分析了低碳能源技术对气候复原力的积极贡献。通过汇编、批判性分析和文献综述等方法,制定了一个符合联合国气候复原力愿景的方法框架,从而可以比较低碳能源技术在单位产出或生命周期内对气候复原力的投入。该框架得到了三个相关概念的支持--能源三难、共享经济/物质足迹和经行星压力调整的人类发展指数。该研究确定了符合建议框架且数据可用的指标:材料总需求(TMR)、目前和未来无补贴的平准化电力成本(LCOE)、燃料或行业二氧化碳排放量、生命周期二氧化碳当量排放量以及事故和空气污染死亡率。本文重点讨论了多国和全球研究,以便对不同地区进行比较。决策者在优先支持低碳技术和规划能源系统设计时,可以利用这些研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate
Climate Earth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍: Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.
期刊最新文献
Spatial and Temporal Evolution of Seasonal Sea Ice Extent of Hudson Strait, Canada, 1971–2018 Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico An Analysis of Romania’s Energy Strategy: Perspectives and Developments since 2020 Taking Stock of Recent Progress in Livelihood Vulnerability Assessments to Climate Change in the Developing World Simulating Climatic Patterns and Their Impacts on the Food Security Stability System in Jammu, Kashmir and Adjoining Regions, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1