{"title":"Assessing RRFS vs. HRRR in Predicting Widespread Convective Systems over Eastern CONUS","authors":"Joseph A. Grim, James O. Pinto, David C. Dowell","doi":"10.1175/waf-d-23-0112.1","DOIUrl":null,"url":null,"abstract":"This study provides a comparison of the operational HRRR version 4 and its eventual successor, the experimental Rapid Refresh Forecast System (RRFS) model (summer 2022 version), at predicting the evolution of convective storm characteristics during widespread convective events that occurred primarily over the eastern United States during summer 2022. Thirty-two widespread convective events were selected using observations from the MRMS composite reflectivity, which includes an equal number of MCSs, quasi-linear convective systems (QLCSs), clusters, and cellular convection. Each storm system was assessed on four primary characteristics: total storm area, total storm count, storm area ratio (an indicator of mean storm size), and storm size distributions. It was found that the HRRR predictions of total storm area were comparable to MRMS, while the RRFS overpredicted total storm area by 40-60% depending on forecast lead time. Both models tended to underpredict storm counts particularly during the storm initiation and growth period. This bias in storm counts originates early in the model runs (forecast hour 1) and propagates through the simulation in both models indicating that both miss storm initiation events and/or merge individual storm objects too quickly. Thus, both models end up with mean storm sizes that are much larger than observed (RRFS more so than HRRR). Additional analyses revealed that the storm area and individual storm biases were largest for the clusters and cellular convective modes. These results can serve as a benchmark for assessing future versions of RRFS and will aid model users in interpreting forecast guidance.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"226 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0112.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides a comparison of the operational HRRR version 4 and its eventual successor, the experimental Rapid Refresh Forecast System (RRFS) model (summer 2022 version), at predicting the evolution of convective storm characteristics during widespread convective events that occurred primarily over the eastern United States during summer 2022. Thirty-two widespread convective events were selected using observations from the MRMS composite reflectivity, which includes an equal number of MCSs, quasi-linear convective systems (QLCSs), clusters, and cellular convection. Each storm system was assessed on four primary characteristics: total storm area, total storm count, storm area ratio (an indicator of mean storm size), and storm size distributions. It was found that the HRRR predictions of total storm area were comparable to MRMS, while the RRFS overpredicted total storm area by 40-60% depending on forecast lead time. Both models tended to underpredict storm counts particularly during the storm initiation and growth period. This bias in storm counts originates early in the model runs (forecast hour 1) and propagates through the simulation in both models indicating that both miss storm initiation events and/or merge individual storm objects too quickly. Thus, both models end up with mean storm sizes that are much larger than observed (RRFS more so than HRRR). Additional analyses revealed that the storm area and individual storm biases were largest for the clusters and cellular convective modes. These results can serve as a benchmark for assessing future versions of RRFS and will aid model users in interpreting forecast guidance.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.