Using eigenvalues of distance matrices for outlier detection

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligent Data Analysis Pub Date : 2023-11-21 DOI:10.3233/ida-230048
Reza Modarres
{"title":"Using eigenvalues of distance matrices for outlier detection","authors":"Reza Modarres","doi":"10.3233/ida-230048","DOIUrl":null,"url":null,"abstract":"Distance or dissimilarity matrices are widely used in applications. We study the relationships between the eigenvalues of the distance matrices and outliers and show that outliers affect the pairwise distances and inflate the eigenvalues. We obtain the eigenvalues of a distance matrix that is affected by k outliers and compare them to the eigenvalues of a distance matrix with a constant structure. We show a discrepancy in the sizes of the eigenvalues of a distance matrix that is contaminated with outliers, present an algorithm and offer a new outlier detection method based on the eigenvalues of the distance matrix. We compare the new distance-based outlier technique with several existing methods under five distributions. The methods are applied to a study of public utility companies and gene expression data.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"57 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-230048","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Distance or dissimilarity matrices are widely used in applications. We study the relationships between the eigenvalues of the distance matrices and outliers and show that outliers affect the pairwise distances and inflate the eigenvalues. We obtain the eigenvalues of a distance matrix that is affected by k outliers and compare them to the eigenvalues of a distance matrix with a constant structure. We show a discrepancy in the sizes of the eigenvalues of a distance matrix that is contaminated with outliers, present an algorithm and offer a new outlier detection method based on the eigenvalues of the distance matrix. We compare the new distance-based outlier technique with several existing methods under five distributions. The methods are applied to a study of public utility companies and gene expression data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用距离矩阵的特征值检测离群值
距离矩阵或异同矩阵在应用中被广泛使用。我们研究了距离矩阵的特征值与异常值之间的关系,结果表明异常值会影响成对距离并使特征值增大。我们得到了受 k 个异常值影响的距离矩阵的特征值,并将其与结构不变的距离矩阵的特征值进行了比较。我们显示了受离群值污染的距离矩阵特征值大小的差异,提出了一种算法,并提供了一种基于距离矩阵特征值的新离群值检测方法。我们将基于距离的新离群点技术与现有的几种方法在五种分布下进行了比较。这些方法被应用于对公用事业公司和基因表达数据的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligent Data Analysis
Intelligent Data Analysis 工程技术-计算机:人工智能
CiteScore
2.20
自引率
5.90%
发文量
85
审稿时长
3.3 months
期刊介绍: Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.
期刊最新文献
ELCA: Enhanced boundary location for Chinese named entity recognition via contextual association Identifying relevant features of CSE-CIC-IDS2018 dataset for the development of an intrusion detection system Knowledge graph embedding in a uniform space MeFiNet: Modeling multi-semantic convolution-based feature interactions for CTR prediction Enhancing Adaboost performance in the presence of class-label noise: A comparative study on EEG-based classification of schizophrenic patients and benchmark datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1