Fine tuning a logical model of cancer cells to predict drug synergies: combining manual curation and automated parameterization

Å. Flobak, John Zobolas, Miguel Vazquez, T. S. Steigedal, L. Thommesen, Asle Grislingås, B. Niederdorfer, Evelina Folkesson, Martin Kuiper
{"title":"Fine tuning a logical model of cancer cells to predict drug synergies: combining manual curation and automated parameterization","authors":"Å. Flobak, John Zobolas, Miguel Vazquez, T. S. Steigedal, L. Thommesen, Asle Grislingås, B. Niederdorfer, Evelina Folkesson, Martin Kuiper","doi":"10.3389/fsysb.2023.1252961","DOIUrl":null,"url":null,"abstract":"Treatment with combinations of drugs carries great promise for personalized therapy for a variety of diseases. We have previously shown that synergistic combinations of cancer signaling inhibitors can be identified based on a logical framework, by manual model definition. We now demonstrate how automated adjustments of model topology and logic equations both can greatly reduce the workload traditionally associated with logical model optimization. Our methodology allows the exploration of larger model ensembles that all obey a set of observations, while being less restrained for parts of the model where parameterization is not guided by biological data. We benchmark the synergy prediction performance of our logical models in a dataset of 153 targeted drug combinations. We show that well-performing manual models faithfully represent measured biomarker data and that their performance can be outmatched by automated parameterization using a genetic algorithm. Whereas the predictive performance of a curated model is strongly affected by simulated curation errors, data-guided deletion of a small subset of regulatory model edges can significantly improve prediction quality. With correct topology we find evidence of some tolerance to simulated errors in the biomarker calibration data, yet performance decreases with reduced data quality. Moreover, we show that predictive logical models are valuable for proposing mechanisms underpinning observed synergies. With our framework we predict the synergy of joint inhibition of PI3K and TAK1, and further substantiate this prediction with observations in cancer cell cultures and in xenograft experiments.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2023.1252961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Treatment with combinations of drugs carries great promise for personalized therapy for a variety of diseases. We have previously shown that synergistic combinations of cancer signaling inhibitors can be identified based on a logical framework, by manual model definition. We now demonstrate how automated adjustments of model topology and logic equations both can greatly reduce the workload traditionally associated with logical model optimization. Our methodology allows the exploration of larger model ensembles that all obey a set of observations, while being less restrained for parts of the model where parameterization is not guided by biological data. We benchmark the synergy prediction performance of our logical models in a dataset of 153 targeted drug combinations. We show that well-performing manual models faithfully represent measured biomarker data and that their performance can be outmatched by automated parameterization using a genetic algorithm. Whereas the predictive performance of a curated model is strongly affected by simulated curation errors, data-guided deletion of a small subset of regulatory model edges can significantly improve prediction quality. With correct topology we find evidence of some tolerance to simulated errors in the biomarker calibration data, yet performance decreases with reduced data quality. Moreover, we show that predictive logical models are valuable for proposing mechanisms underpinning observed synergies. With our framework we predict the synergy of joint inhibition of PI3K and TAK1, and further substantiate this prediction with observations in cancer cell cultures and in xenograft experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微调癌细胞逻辑模型以预测药物协同作用:将人工整理与自动参数化相结合
药物组合治疗为多种疾病的个性化治疗带来了巨大希望。我们之前已经证明,通过手动定义模型,可以根据逻辑框架确定癌症信号抑制剂的协同组合。现在,我们展示了自动调整模型拓扑结构和逻辑方程如何大大减少传统逻辑模型优化的工作量。我们的方法允许探索更大的模型集合,这些模型集合都服从一组观察结果,同时对模型中参数设置不受生物数据指导的部分限制较少。我们在一个包含 153 种靶向药物组合的数据集中对逻辑模型的协同预测性能进行了基准测试。我们的研究表明,性能良好的手动模型能忠实地反映测得的生物标记数据,而使用遗传算法进行自动参数化后,其性能可与之媲美。虽然模型的预测性能会受到仿真模型误差的严重影响,但在数据指导下删除一小部分调控模型边缘可以显著提高预测质量。在拓扑结构正确的情况下,我们发现生物标记校准数据对模拟错误有一定的容忍度,但随着数据质量的降低,预测性能也会下降。此外,我们还发现,预测性逻辑模型对于提出观察到的协同作用的基础机制很有价值。利用我们的框架,我们预测了联合抑制 PI3K 和 TAK1 的协同作用,并通过在癌细胞培养和异种移植实验中的观察进一步证实了这一预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transporter annotations are holding up progress in metabolic modeling Life’s building blocks: the modular path to multiscale complexity Coupling quantitative systems pharmacology modelling to machine learning and artificial intelligence for drug development: its pAIns and gAIns Predicting chronic responses to calcium channel blockade with a virtual population of African Americans with hypertensive chronic kidney disease Building an Adverse Outcome Pathway network for COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1