{"title":"Robust Q-compensated multidimensional impedance inversion using seislet-domain shaping regularization","authors":"Chao Li, Guochang Liu, Zhiyong Wang, Lanting Shi, Qibin Wu","doi":"10.1190/geo2022-0717.1","DOIUrl":null,"url":null,"abstract":"Acoustic impedance (AI) inversion plays a vital role in seismic interpretation because AI contains valuable information on lithology and contributes to reservoir characterization. However, the effect of anelastic attenuation dissipates the energy and distorts the phase of seismic waves during their propagation in the Earth. Such attenuation-induced effects will degrade the quality of AI inversion unless some preprocessing routines are performed in advance (e.g., inverse Q-filtering). In order to invert for AI from nonstationary seismic data directly and enhance the lateral continuity, we propose a robust Q-compensated multidimensional AI inversion method. We incorporate the Q-filtering operator into the conventional convolution model and solve the inverse problem iteratively, which can avoid some of the errors introduced by those compensation-related processing routines. Furthermore, we incorporate structural information into the inversion processing via seislet-domain nonlinear shaping regularization. Compared with the conventional nonstationary multichannel AI inversion method, our proposed method can accelerate the convergence rate during inversion and further improve lateral continuity and accuracy in the presence of noise. Finally, synthetic and field data are used to validate the effectiveness and robustness of the proposed method. The results demonstrate that the proposed method can retrieve AI from nonstationary seismic data directly with improved efficiency and remove possible artifacts caused by ambient noise.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"52 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0717.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic impedance (AI) inversion plays a vital role in seismic interpretation because AI contains valuable information on lithology and contributes to reservoir characterization. However, the effect of anelastic attenuation dissipates the energy and distorts the phase of seismic waves during their propagation in the Earth. Such attenuation-induced effects will degrade the quality of AI inversion unless some preprocessing routines are performed in advance (e.g., inverse Q-filtering). In order to invert for AI from nonstationary seismic data directly and enhance the lateral continuity, we propose a robust Q-compensated multidimensional AI inversion method. We incorporate the Q-filtering operator into the conventional convolution model and solve the inverse problem iteratively, which can avoid some of the errors introduced by those compensation-related processing routines. Furthermore, we incorporate structural information into the inversion processing via seislet-domain nonlinear shaping regularization. Compared with the conventional nonstationary multichannel AI inversion method, our proposed method can accelerate the convergence rate during inversion and further improve lateral continuity and accuracy in the presence of noise. Finally, synthetic and field data are used to validate the effectiveness and robustness of the proposed method. The results demonstrate that the proposed method can retrieve AI from nonstationary seismic data directly with improved efficiency and remove possible artifacts caused by ambient noise.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.