Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Eurasian Chemico-Technological Journal Pub Date : 2023-11-20 DOI:10.18321/ectj1522
O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay
{"title":"Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery","authors":"O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Z. Toktarbay","doi":"10.18321/ectj1522","DOIUrl":null,"url":null,"abstract":"With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"BC-30 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高石油采收率的沙漠节水与运输:缩小差距,实现可持续石油开采
随着人们对干旱地区水资源匮乏问题的关注,创新解决方案势在必行,以满足强化采油(EOR)工艺对水日益增长的需求。本文介绍了一项关于制备用于节水和储水的超疏水砂的研究,重点关注其在 EOR 中的潜在应用。研究结果表明,沙子疏水化后的最大水接触角为 158°。通过在铺有超疏水沙的土壤中种植植物,对沙子的储水能力进行了评估。在土壤上方和下方都使用超疏水沙时,土壤保持湿润的时间超过 10 天。相反,如果不使用超疏水沙,土壤湿度只能维持 3 天。这项研究证明了超疏水砂在延长土壤湿度方面的潜力,使其成为 EOR 和干旱地区节水应用的宝贵资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
期刊最新文献
Technology for Isolation Essential Oil from the Buds of Populus balsamifera L. Obtaining Edible Pullulan-based Films with Antimicrobial Properties The Synthesis and in vitro Study of 9-fluorenylmethoxycarbonyl Protected Non-Protein Amino Acids Antimicrobial Activity Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1