Chengwei Zhang, Yunjun Zhang, Haotian Zhang, Wenpeng Bai
{"title":"Pressure and rate distribute performance of multiple fractured well with multi-wing fracture in low-permeability gas reservoirs","authors":"Chengwei Zhang, Yunjun Zhang, Haotian Zhang, Wenpeng Bai","doi":"10.1093/jge/gxad095","DOIUrl":null,"url":null,"abstract":"In this work, a new mathematical model of fractured well considering multiple factors (Permeability stress sensitivity, multiple wells interference and multiple fractures interference) is established to simulate wellbore pressure performance and rate distribution in tight gas reservoirs. The new fracture discrete coupling mathematical model is established. The wellbore pressure solution can be obtained by the pressure drop superposition and Stehfest numerical inversion. Seven flow stages are observed according to the characteristics of pressure derivative curve. The influence of several significant parameters, including rate ratio, fracture half-length, and well spacing and stress sensitivity are discussed. Based on the developed model, we demonstrated a field case to verify model accuracy. This work provides new supplementary knowledge to improve pressure data interpretation for multi-well group in tight gas reservoirs.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad095","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a new mathematical model of fractured well considering multiple factors (Permeability stress sensitivity, multiple wells interference and multiple fractures interference) is established to simulate wellbore pressure performance and rate distribution in tight gas reservoirs. The new fracture discrete coupling mathematical model is established. The wellbore pressure solution can be obtained by the pressure drop superposition and Stehfest numerical inversion. Seven flow stages are observed according to the characteristics of pressure derivative curve. The influence of several significant parameters, including rate ratio, fracture half-length, and well spacing and stress sensitivity are discussed. Based on the developed model, we demonstrated a field case to verify model accuracy. This work provides new supplementary knowledge to improve pressure data interpretation for multi-well group in tight gas reservoirs.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.