CG-Fusion CAM: Segmentation of laser-induced damage on large-aperture optics in dark-field images

Yueyue Han, Yingyan Huang, Hangcheng Dong, Fengdong Chen, Fa Zeng, Zhitao Peng, Qihua Zhu, Guodong Liu
{"title":"CG-Fusion CAM: Segmentation of laser-induced damage on large-aperture optics in dark-field images","authors":"Yueyue Han, Yingyan Huang, Hangcheng Dong, Fengdong Chen, Fa Zeng, Zhitao Peng, Qihua Zhu, Guodong Liu","doi":"10.1017/hpl.2023.85","DOIUrl":null,"url":null,"abstract":"Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully-supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly-supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly-supervised semantic segmentation method with continuous gradient CAM and its nonlinear multiscale fusion (CG-Fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for di ff erent damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully-supervised algorithms.","PeriodicalId":505615,"journal":{"name":"High Power Laser Science and Engineering","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/hpl.2023.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmenting dark-field images of laser-induced damage on large-aperture optics in high-power laser facilities is challenged by complicated damage morphology, uneven illumination and stray light interference. Fully-supervised semantic segmentation algorithms have achieved state-of-the-art performance but rely on a large number of pixel-level labels, which are time-consuming and labor-consuming to produce. LayerCAM, an advanced weakly-supervised semantic segmentation algorithm, can generate pixel-accurate results using only image-level labels, but its scattered and partially underactivated class activation regions degrade segmentation performance. In this paper, we propose a weakly-supervised semantic segmentation method with continuous gradient CAM and its nonlinear multiscale fusion (CG-Fusion CAM). The method redesigns backpropagating gradients and nonlinearly activates multiscale fused heatmaps to generate more fine-grained class activation maps with an appropriate activation degree for di ff erent damage site sizes. Experiments on our dataset show that the proposed method can achieve segmentation performance comparable to that of fully-supervised algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CG-Fusion CAM:暗视野图像中大孔径光学器件上激光诱导损伤的分割
在高功率激光设备中,对大孔径光学器件上的激光诱导损伤进行暗场图像分割面临着复杂的损伤形态、不均匀照明和杂散光干扰等挑战。完全监督的语义分割算法已经达到了最先进的性能,但依赖于大量的像素级标签,而这些标签的制作费时费力。LayerCAM 是一种先进的弱监督语义分割算法,只需使用图像级标签就能生成像素精确的结果,但其分散和部分激活不足的类激活区域会降低分割性能。本文提出了一种采用连续梯度 CAM 及其非线性多尺度融合(CG-Fusion CAM)的弱监督语义分割方法。该方法重新设计了反向传播梯度,并对多尺度融合热图进行非线性激活,从而生成更细粒度的类激活图,并针对不同的损伤部位大小提供适当的激活度。在我们的数据集上进行的实验表明,所提出的方法可以达到与完全监督算法相当的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel small-scale self-focusing suppression method for the post-compression in high peak power lasers High efficiency, high-resolution multiple monochromatic imaging based on multilayers mirrors array for laser-plasma diagnostic of X-ray continuum emission Theory of small-scale self-focusing of spatially partially coherent beams and its implications for high-power laser system 301 W narrow-linewidth in-band pumped Er:Yb co-doped fiber amplifier at 1585 nm and related modeling for dynamics study and optimization Random pinhole attenuator for high-power laser beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1