Sensitivity of internal-tide generation to stratification and its implication for deep overturning circulations

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2023-11-20 DOI:10.1175/jpo-d-23-0058.1
Veit Lüschow, Jin-Song von Storch
{"title":"Sensitivity of internal-tide generation to stratification and its implication for deep overturning circulations","authors":"Veit Lüschow, Jin-Song von Storch","doi":"10.1175/jpo-d-23-0058.1","DOIUrl":null,"url":null,"abstract":"The simple scaling relation for internal-tide generation proposed by Jayne and St. Laurent is widely used for parameterizing turbulent mixing induced by breaking of internal tides. Based on the internal-tide generation derived from a 0.1° ocean general circulation model, we show that depending on which stratification is used, this relation produces different vertical distributions of internal-tide generation. When using the buoyancy frequency at the seafloor, which is a common practice, the scaling relation produces, relative to the model, too strong internal-tide generation in the upper 2000 m and too weak internal-tide generation in the lower 2000 m. Moreover, the different vertical distributions in the different ocean basins, characterized by a generally decreasing internal tide generation with increasing depth in the Indo-Pacific but not-decreasing or even increasing internal tide generation with increasing depth in the upper 3000 m of the Atlantic, cannot be captured when using bottom stratification. These unsatisfactory features can be easily removed by replacing the buoyancy frequency at the seafloor by a buoyancy frequency averaged over a large part of the water column. To our knowledge, this sensitivity to stratification has not been explicitly quantified for the global ocean. Because of this sensitivity, the scaling relation of Jayne and St. Laurent should be used with an averaged stratification to ensure a more adequate representation of turbulent diffusivity due to tidal mixing and water mass transformation in the deep oceans.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"93 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0058.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The simple scaling relation for internal-tide generation proposed by Jayne and St. Laurent is widely used for parameterizing turbulent mixing induced by breaking of internal tides. Based on the internal-tide generation derived from a 0.1° ocean general circulation model, we show that depending on which stratification is used, this relation produces different vertical distributions of internal-tide generation. When using the buoyancy frequency at the seafloor, which is a common practice, the scaling relation produces, relative to the model, too strong internal-tide generation in the upper 2000 m and too weak internal-tide generation in the lower 2000 m. Moreover, the different vertical distributions in the different ocean basins, characterized by a generally decreasing internal tide generation with increasing depth in the Indo-Pacific but not-decreasing or even increasing internal tide generation with increasing depth in the upper 3000 m of the Atlantic, cannot be captured when using bottom stratification. These unsatisfactory features can be easily removed by replacing the buoyancy frequency at the seafloor by a buoyancy frequency averaged over a large part of the water column. To our knowledge, this sensitivity to stratification has not been explicitly quantified for the global ocean. Because of this sensitivity, the scaling relation of Jayne and St. Laurent should be used with an averaged stratification to ensure a more adequate representation of turbulent diffusivity due to tidal mixing and water mass transformation in the deep oceans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内潮生成对分层的敏感性及其对深层翻转环流的影响
Jayne 和 St. Laurent 提出的内潮生成的简单比例关系被广泛用于参数化内潮破裂引起的湍流混合。根据 0.1° 海洋全环流模式得出的内潮生成量,我们发现,根据使用的分层情况,该比例关系会产生不同的内潮生成量垂直分布。此外,不同大洋盆地的垂直分布也不尽相同,印度洋-太平洋地区的内潮生成量随着深度的增加而普遍减少,而大西洋上层 3000 米地区的内潮生成量却没有减少,甚至还在增加。用水柱大部分区域的平均浮力频率来代替海底浮力频率,可以很容易地消除这些不理想的特征。据我们所知,全球海洋对分层的这种敏感性尚未明确量化。由于这种敏感性,Jayne 和 St. Laurent 的比例关系应与平均分层一起使用,以确保更充分地反映深海中潮汐混合和水团转换引起的湍流扩散性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Why is the Westward Rossby Wave Propagation from the California Coast “Too Fast”? Observations of Parametric Subharmonic Instability of Diurnal Internal Tides in the Northwest Pacific Imprint of chaos on the ocean energy cycle from an eddying North Atlantic ensemble Interpreting Negative IOD Events Based on the Transfer Routes of Wave Energy in the Upper Ocean On the Pathways of Wind-Driven Coastal Upwelling: Nonlinear Momentum Flux and Baroclinic Instability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1