DLMDish: Using Applied Deep Learning and Computer Vision to Automatically Classify Mauritian Dishes

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-11-18 DOI:10.1142/s0219467825500457
Mohammud Shaad Ally Toofanee, Omar Boudraa, Karim Tamine
{"title":"DLMDish: Using Applied Deep Learning and Computer Vision to Automatically Classify Mauritian Dishes","authors":"Mohammud Shaad Ally Toofanee, Omar Boudraa, Karim Tamine","doi":"10.1142/s0219467825500457","DOIUrl":null,"url":null,"abstract":"The benefits of using an automatic dietary assessment system for accompanying diabetes patients and prediabetic persons to control the risk factor also referred to as the obesity “pandemic” are now widely proven and accepted. However, there is no universal solution as eating habits of people are dependent on context and culture. This project is the cornerstone for future works of researchers and health professionals in the field of automatic dietary assessment of Mauritian dishes. We propose a process to produce a food dataset for Mauritian dishes using the Generative Adversarial Network (GAN) and a fine Convolutional Neural Network (CNN) model for identifying Mauritian food dishes. The outputs and findings of this research can be used in the process of automatic calorie calculation and food recommendation, primarily using ubiquitous devices like mobile phones via mobile applications. Using the Adam optimizer with carefully fixed hyper-parameters, we achieved an Accuracy of 95.66% and Loss of 3.5% as concerns the recognition task.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":"202 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The benefits of using an automatic dietary assessment system for accompanying diabetes patients and prediabetic persons to control the risk factor also referred to as the obesity “pandemic” are now widely proven and accepted. However, there is no universal solution as eating habits of people are dependent on context and culture. This project is the cornerstone for future works of researchers and health professionals in the field of automatic dietary assessment of Mauritian dishes. We propose a process to produce a food dataset for Mauritian dishes using the Generative Adversarial Network (GAN) and a fine Convolutional Neural Network (CNN) model for identifying Mauritian food dishes. The outputs and findings of this research can be used in the process of automatic calorie calculation and food recommendation, primarily using ubiquitous devices like mobile phones via mobile applications. Using the Adam optimizer with carefully fixed hyper-parameters, we achieved an Accuracy of 95.66% and Loss of 3.5% as concerns the recognition task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DLMDish:利用应用深度学习和计算机视觉自动分类毛里求斯菜肴
使用自动饮食评估系统来帮助糖尿病患者和糖尿病前期患者控制肥胖这一危险因素的好处现已得到广泛证实和认可。然而,由于人们的饮食习惯取决于环境和文化,因此并没有通用的解决方案。本项目是研究人员和卫生专业人员今后在毛里求斯菜肴自动饮食评估领域开展工作的基石。我们提出了一种利用生成对抗网络(GAN)和精细卷积神经网络(CNN)模型生成毛里求斯菜肴数据集的方法,用于识别毛里求斯菜肴。这项研究的成果和发现可用于自动计算卡路里和推荐食物的过程,主要是通过移动应用程序使用手机等无处不在的设备。利用亚当优化器和精心设定的超参数,我们在识别任务中取得了 95.66% 的准确率和 3.5% 的损失率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1