Real-time Interpretation of EEG Signals for Consciousness State Assessment

Jingming Gong, Linfeng Sui, Ran Zhang, Boning Li, Chengyuan Shen, Jianting Cao
{"title":"Real-time Interpretation of EEG Signals for Consciousness State Assessment","authors":"Jingming Gong, Linfeng Sui, Ran Zhang, Boning Li, Chengyuan Shen, Jianting Cao","doi":"10.24297/ijct.v23i.9541","DOIUrl":null,"url":null,"abstract":"Assessing the level of consciousness is critical in clinical practice, especially for patients with traumatic brain injuriesor those in a coma or vegetative state. Traditional methods like the Glasgow Coma Scale have limitations, such asinter-observer variability and low sensitivity. In recent years, electroencephalography (EEG) has emerged as a promisingapproach for assessing consciousness, offering non-invasive, real-time monitoring of brain activity. In this study, we propose a real-time analysis system for assessing consciousness levels using a portable EEG device. Our system analyzes EEG signals and provides valuable insights into consciousness levels, enabling prompt clinical interventions. The real-time nature of our system allows for continuous monitoring and immediate assessment of consciousness levels. Compared to traditional methods, our system offers advantages in terms of real-time functionality, providing a comprehensive evaluation of consciousness. Through extensive experiments using real patient data, our systemdemonstrates its value as a valuable tool for assessing consciousness levels in clinical practice. It offers healthcare professionals an efficient and reliable method for evaluating consciousness.","PeriodicalId":210853,"journal":{"name":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/ijct.v23i.9541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing the level of consciousness is critical in clinical practice, especially for patients with traumatic brain injuriesor those in a coma or vegetative state. Traditional methods like the Glasgow Coma Scale have limitations, such asinter-observer variability and low sensitivity. In recent years, electroencephalography (EEG) has emerged as a promisingapproach for assessing consciousness, offering non-invasive, real-time monitoring of brain activity. In this study, we propose a real-time analysis system for assessing consciousness levels using a portable EEG device. Our system analyzes EEG signals and provides valuable insights into consciousness levels, enabling prompt clinical interventions. The real-time nature of our system allows for continuous monitoring and immediate assessment of consciousness levels. Compared to traditional methods, our system offers advantages in terms of real-time functionality, providing a comprehensive evaluation of consciousness. Through extensive experiments using real patient data, our systemdemonstrates its value as a valuable tool for assessing consciousness levels in clinical practice. It offers healthcare professionals an efficient and reliable method for evaluating consciousness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时解读脑电信号以评估意识状态
评估意识水平在临床实践中至关重要,尤其是对于脑外伤患者、昏迷患者或植物人患者。格拉斯哥昏迷量表(Glasgow Coma Scale)等传统方法有其局限性,如观察者之间的差异性和灵敏度低。近年来,脑电图(EEG)已成为一种很有前途的意识评估方法,它能对大脑活动进行无创、实时的监测。在本研究中,我们提出了一种使用便携式脑电图设备评估意识水平的实时分析系统。我们的系统可分析脑电信号并提供有关意识水平的有价值的见解,从而实现及时的临床干预。我们系统的实时性允许对意识水平进行连续监测和即时评估。与传统方法相比,我们的系统在实时功能方面更具优势,可提供全面的意识评估。通过使用真实病人数据进行大量实验,我们的系统证明了其作为临床实践中评估意识水平的重要工具的价值。它为医护人员提供了一种高效可靠的意识评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Positive-Unlabeled Learning Method for Positive Emotion Recognition Using EEG technology Unveiling Neurophysiological Markers of Consciousness Levels through EEG Exploration A NEW ROBUST HOMOMORPHIC ENCRYPTION SCHEME BASED ON PAILLIER, RESIDUE NUMBER SYSTEM AND EL-GAMAL Convolutional Neural Networks for Deep Sleep Detection Based on Data Augmentation On Defining Smart Cities using Transformer Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1