Parameter identification and generality analysis of photovoltaic module dual-diode model based on artificial hummingbird algorithm

IF 2.9 4区 环境科学与生态学 Q3 ENERGY & FUELS Clean Energy Pub Date : 2023-11-17 DOI:10.1093/ce/zkad066
Zhen Li, Jianke Hu, Yi Han, Hefeng Li, Jun Wang, P. D. Lund
{"title":"Parameter identification and generality analysis of photovoltaic module dual-diode model based on artificial hummingbird algorithm","authors":"Zhen Li, Jianke Hu, Yi Han, Hefeng Li, Jun Wang, P. D. Lund","doi":"10.1093/ce/zkad066","DOIUrl":null,"url":null,"abstract":"The aim of this study is to propose a photovoltaic (PV) module simulation model with high accuracy under practical working conditions and strong applicability in the engineering field to meet various PV system simulation needs. Unlike previous model-building methods, this study combines the advantages of analytical and metaheuristic algorithms. First, the applicability of various metaheuristic algorithms is comprehensively compared and the seven parameters of the PV cell under standard test conditions are extracted using the double diode model, which verifies that the artificial hummingbird algorithm has higher accuracy than other algorithms. Then, the seven parameters under different conditions are corrected using the analytical method. In terms of the correction method, the ideal factor correction is added on the basis of previous methods to solve the deviation between simulated data and measured data in the non-linear section. Finally, the root mean squared error between the simulated current data and the measured current data of the proposed model under three different temperatures and irradiance is 0.0697, 0.0570 and 0.0289 A, respectively.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkad066","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to propose a photovoltaic (PV) module simulation model with high accuracy under practical working conditions and strong applicability in the engineering field to meet various PV system simulation needs. Unlike previous model-building methods, this study combines the advantages of analytical and metaheuristic algorithms. First, the applicability of various metaheuristic algorithms is comprehensively compared and the seven parameters of the PV cell under standard test conditions are extracted using the double diode model, which verifies that the artificial hummingbird algorithm has higher accuracy than other algorithms. Then, the seven parameters under different conditions are corrected using the analytical method. In terms of the correction method, the ideal factor correction is added on the basis of previous methods to solve the deviation between simulated data and measured data in the non-linear section. Finally, the root mean squared error between the simulated current data and the measured current data of the proposed model under three different temperatures and irradiance is 0.0697, 0.0570 and 0.0289 A, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工蜂鸟算法的光伏组件双二极管模型参数识别和通用性分析
本研究旨在提出一种在实际工作条件下精度高、在工程领域应用性强的光伏(PV)模块仿真模型,以满足各种光伏系统仿真需求。与以往的模型建立方法不同,本研究结合了分析算法和元启发式算法的优势。首先,综合比较了各种元搜索算法的适用性,并利用双二极管模型提取了标准测试条件下光伏电池的七个参数,验证了人工蜂鸟算法比其他算法具有更高的精度。然后,利用分析方法对不同条件下的七个参数进行修正。在修正方法上,在前人方法的基础上增加了理想因子修正,解决了非线性部分模拟数据与测量数据的偏差问题。最后,在三种不同温度和辐照度条件下,拟议模型的模拟电流数据与测量电流数据的均方根误差分别为 0.0697、0.0570 和 0.0289 A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean Energy
Clean Energy Environmental Science-Management, Monitoring, Policy and Law
CiteScore
4.00
自引率
13.00%
发文量
55
期刊最新文献
Exploring commercial water electrolyser systems: a data-based analysis of product characteristics A hybrid machine-learning model for solar irradiance forecasting An application of a genetic algorithm in co-optimization of geological CO2 storage based on artificial neural networks Optimal design of hybrid renewable-energy microgrid system: a techno–economic–environment–social–reliability perspective A hybrid solar–biogas system for post-COVID-19 rural energy access
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1