{"title":"Synthesis and Crystal and Electronic Structures of the Zintl Phase Sr21Cd4Sb18","authors":"Kowsik Ghosh, S. Bobev","doi":"10.3390/solids4040022","DOIUrl":null,"url":null,"abstract":"Reported herein are the synthesis and crystal chemistry analysis of the Zintl phase Sr21Cd4Sb18. Single crystals of this compound were grown using the Sn-flux method, and structural characterization was carried out using single-crystal X-ray diffraction. Crystal data: Monoclinic space group C2/m (No. 12, Z = 4); a = 18.2536(6) Å, b = 17.4018(5) Å, and c = 17.8979(6) Å, β = 92.024(1)°. The structure is based on edge- and corner-shared CdSb4 tetrahedra, which ultimately form octameric [Cd8Sb22] fragments, where two symmetry-equivalent subunits are connected via a homoatomic Sb–Sb interaction. The electronic band structure calculations contained herein reveal the emergence of a direct gap between the valence and the conduction bands.","PeriodicalId":21906,"journal":{"name":"Solids","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/solids4040022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Reported herein are the synthesis and crystal chemistry analysis of the Zintl phase Sr21Cd4Sb18. Single crystals of this compound were grown using the Sn-flux method, and structural characterization was carried out using single-crystal X-ray diffraction. Crystal data: Monoclinic space group C2/m (No. 12, Z = 4); a = 18.2536(6) Å, b = 17.4018(5) Å, and c = 17.8979(6) Å, β = 92.024(1)°. The structure is based on edge- and corner-shared CdSb4 tetrahedra, which ultimately form octameric [Cd8Sb22] fragments, where two symmetry-equivalent subunits are connected via a homoatomic Sb–Sb interaction. The electronic band structure calculations contained herein reveal the emergence of a direct gap between the valence and the conduction bands.