{"title":"Correlations of the Electronic, Elastic and Thermo-Electric Properties of Alpha Copper Sulphide and Selenide","authors":"Moshibudi Ramoshaba, T. Mosuang","doi":"10.3390/computation11110233","DOIUrl":null,"url":null,"abstract":"A full potential all-electron density functional method within generalized gradient approximation is used herein to investigate correlations of the electronic, elastic and thermo-electric transport properties of cubic copper sulphide and copper selenide. The electronic band structure and density of states suggest a metallic behaviour with a zero-energy band gap for both materials. Elastic property calculations suggest stiff materials, with bulk to shear modulus ratios of 0.35 and 0.44 for Cu2S and Cu2Se, respectively. Thermo-electric transport properties were estimated using the Boltzmann transport approach. The Seebeck coefficient, electrical conductivity, thermal conductivity and power factor all suggest a potential p-type conductivity for α-Cu2S and n-type conductivity for α-Cu2Se.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"112 9","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A full potential all-electron density functional method within generalized gradient approximation is used herein to investigate correlations of the electronic, elastic and thermo-electric transport properties of cubic copper sulphide and copper selenide. The electronic band structure and density of states suggest a metallic behaviour with a zero-energy band gap for both materials. Elastic property calculations suggest stiff materials, with bulk to shear modulus ratios of 0.35 and 0.44 for Cu2S and Cu2Se, respectively. Thermo-electric transport properties were estimated using the Boltzmann transport approach. The Seebeck coefficient, electrical conductivity, thermal conductivity and power factor all suggest a potential p-type conductivity for α-Cu2S and n-type conductivity for α-Cu2Se.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.