Kinetics of nitric acid leaching of bornite and chalcopyrite

Q4 Materials Science Chimica Techno Acta Pub Date : 2023-11-16 DOI:10.15826/chimtech.2023.10.4.10
Yuri Shklyaev, O. Dizer, Tatyana Lugovitskaya, D. Golovkin, Denis Rogozhnikov
{"title":"Kinetics of nitric acid leaching of bornite and chalcopyrite","authors":"Yuri Shklyaev, O. Dizer, Tatyana Lugovitskaya, D. Golovkin, Denis Rogozhnikov","doi":"10.15826/chimtech.2023.10.4.10","DOIUrl":null,"url":null,"abstract":"The paper presents a study of the process of nitric acid dissolution of the natural minerals chalcopyrite and bornite. The influence of various parameters, including temperature, nitric acid concentration and particle sizes, on this process was examined. Based on the data obtained, the values of apparent activation energy (57.41 and 42.98 kJ/mol for chalcopyrite and bornite, respectively), empirical orders with respect to nitric acid (1.62 and 1.57 for chalcopyrite and bornite, respectively) and with respect to particle size (–1.16 and –2.53 for chalcopyrite and bornite, respectively) were calculated using the shrinking core model. Generalized kinetic equations for the dissolution process of both minerals were derived. Based on the calculations performed, it was suggested that the dissolution processes of chalcopyrite and bornite under these conditions are limited by internal diffusion.","PeriodicalId":9964,"journal":{"name":"Chimica Techno Acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimica Techno Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/chimtech.2023.10.4.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a study of the process of nitric acid dissolution of the natural minerals chalcopyrite and bornite. The influence of various parameters, including temperature, nitric acid concentration and particle sizes, on this process was examined. Based on the data obtained, the values of apparent activation energy (57.41 and 42.98 kJ/mol for chalcopyrite and bornite, respectively), empirical orders with respect to nitric acid (1.62 and 1.57 for chalcopyrite and bornite, respectively) and with respect to particle size (–1.16 and –2.53 for chalcopyrite and bornite, respectively) were calculated using the shrinking core model. Generalized kinetic equations for the dissolution process of both minerals were derived. Based on the calculations performed, it was suggested that the dissolution processes of chalcopyrite and bornite under these conditions are limited by internal diffusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用硝酸浸出辉锑矿和黄铜矿的动力学原理
本文研究了天然矿物黄铜矿和辉铜矿的硝酸溶解过程。研究了温度、硝酸浓度和颗粒大小等各种参数对这一过程的影响。根据所获得的数据,利用缩核模型计算了表观活化能值(黄铜矿和辉铜矿分别为 57.41 和 42.98 kJ/mol)、与硝酸有关的经验阶数(黄铜矿和辉铜矿分别为 1.62 和 1.57)以及与粒度有关的经验阶数(黄铜矿和辉铜矿分别为 -1.16 和 -2.53)。得出了这两种矿物溶解过程的通用动力学方程。根据计算结果,黄铜矿和辉铜矿在这些条件下的溶解过程受到内部扩散的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chimica Techno Acta
Chimica Techno Acta Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
67
审稿时长
4 weeks
期刊最新文献
Investigation of the reaction of dimedone with aromatic aldehydes in the presence of copper oxide nanoparticles Dispersive surface free energy of adsorbents modified by supramolecular structures of heterocyclic compounds Cationic amphiphilic meroterpenoids: synthesis, antibacterial, antifungal and mutagenic activity Photoelectrochemical properties of Pt- and Ir-modified graphitic carbon nitride Features of electronic states in the vicinity of band gap and atomic structure of Ta- and Nb-doped Li7La3Zr2O12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1