Performance analysis and techno-economic assessment of a developed cooling/preheating small PVT-RO desalination plant

H. B. Bacha, A. S. Abdullah, Umar Alqasir, Reda S. Salama, M. Abdelgaied, A. Kabeel
{"title":"Performance analysis and techno-economic assessment of a developed cooling/preheating small PVT-RO desalination plant","authors":"H. B. Bacha, A. S. Abdullah, Umar Alqasir, Reda S. Salama, M. Abdelgaied, A. Kabeel","doi":"10.3389/fenrg.2023.1287743","DOIUrl":null,"url":null,"abstract":"Middle East and North Africa (MENA) countries are experiencing rapid population growth, so water and electricity consumption plays a crucial role in the sustainable development of these countries. To overcome the water scarcity and electricity problems facing the MENA region, the developed cooling/preheating small PVT-RO desalination plants have been proposed as a practical solution. To achieve sustainable water and energy development in the MENA region, this study presents a commendable and highly efficient renewable energy project for freshwater production and electricity generation to solve the energy crisis and water scarcity in the MENA countries. Therefore, this study aims to develop a cooling/preheating small PVT-RO desalination plant to facilitate freshwater supply to remote regions and produce electricity. This was done by connecting photovoltaic/thermal (PVT) collectors with reverse osmosis (RO) desalination systems, where seawater is used as a medium to cool photovoltaic cells to increase electric power generation and at the same time recover thermal energy and use it in the initial heating of feed seawater before it is fed into the RO plants, thus increasing its productivity. The results indicate that using the photovoltaic thermal panels as preheating units will lead to a 0.135 kWh/m3 reduction in the rate of specific electricity consumption for the RO desalination plant, as well as increase the electricity generation from PVT panels by a rate of 8%. The economic feasibility presented that the proposed developed cooling/preheating small PVT-RO desalination plant represents an effective technology that reduced the freshwater cost by a rate of 49.5%.","PeriodicalId":503838,"journal":{"name":"Frontiers in Energy Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenrg.2023.1287743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Middle East and North Africa (MENA) countries are experiencing rapid population growth, so water and electricity consumption plays a crucial role in the sustainable development of these countries. To overcome the water scarcity and electricity problems facing the MENA region, the developed cooling/preheating small PVT-RO desalination plants have been proposed as a practical solution. To achieve sustainable water and energy development in the MENA region, this study presents a commendable and highly efficient renewable energy project for freshwater production and electricity generation to solve the energy crisis and water scarcity in the MENA countries. Therefore, this study aims to develop a cooling/preheating small PVT-RO desalination plant to facilitate freshwater supply to remote regions and produce electricity. This was done by connecting photovoltaic/thermal (PVT) collectors with reverse osmosis (RO) desalination systems, where seawater is used as a medium to cool photovoltaic cells to increase electric power generation and at the same time recover thermal energy and use it in the initial heating of feed seawater before it is fed into the RO plants, thus increasing its productivity. The results indicate that using the photovoltaic thermal panels as preheating units will lead to a 0.135 kWh/m3 reduction in the rate of specific electricity consumption for the RO desalination plant, as well as increase the electricity generation from PVT panels by a rate of 8%. The economic feasibility presented that the proposed developed cooling/preheating small PVT-RO desalination plant represents an effective technology that reduced the freshwater cost by a rate of 49.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对已开发的冷却/预热小型 PVT-RO 海水淡化装置进行性能分析和技术经济评估
中东和北非(MENA)国家人口增长迅速,因此水电消耗对这些国家的可持续发展起着至关重要的作用。为了解决中东和北非地区面临的缺水和用电问题,有人提出了一种实用的解决方案,即开发冷却/预热小型 PVT-RO 海水淡化装置。为了实现中东和北非地区水和能源的可持续发展,本研究提出了一个用于淡水生产和发电的值得称赞的高效可再生能源项目,以解决中东和北非国家的能源危机和水资源短缺问题。因此,本研究旨在开发一个冷却/预热小型 PVT-RO 海水淡化厂,以促进偏远地区的淡水供应和发电。具体做法是将光伏/热能(PVT)集热器与反渗透(RO)海水淡化系统连接起来,将海水作为介质冷却光伏电池,以增加发电量,同时回收热能,并在海水进入反渗透设备之前用于给料海水的初始加热,从而提高其生产率。研究结果表明,使用光伏热能电池板作为预热装置,可使反渗透海水淡化厂的具体耗电量减少 0.135 千瓦时/立方米,并使光伏热能电池板的发电量增加 8%。经济可行性表明,拟议开发的冷却/预热小型 PVT-RO 海水淡化厂是一项有效的技术,可将淡水成本降低 49.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and design for a storage liquid refrigerator considering the characteristics of energy storage batteries Transaction strategy of virtual power plants and multi-energy systems with multi-agent Stackelberg game based on integrated energy-carbon pricing The analysis of the threshold value of the complex short-circuit ratio index and its significance in the context of static voltage stability Overview of the PI (2DoF) algorithm in wind power system optimization and control A stochastic power flow-based static security assessment under uncertain scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1