Worod Adris Shatnan, M. Almawlawe, Mustafa Abd AL-Aress Jabur
{"title":"Optimal Fuzzy-FOPID, Fuzzy-PID Control Schemes for Trajectory Tracking of 3DOF Robot Manipulator","authors":"Worod Adris Shatnan, M. Almawlawe, Mustafa Abd AL-Aress Jabur","doi":"10.25130/tjes.30.4.6","DOIUrl":null,"url":null,"abstract":"The present study explores the guidance of a robotic arm along a predefined path by implementing an optimal fuzzy fractional order PID controller-based control strategy. This method serves as a means to address the nonlinearity and unpredictability of the robotic manipulator, contingent upon the fuzzy logic controller's specifications and the employment of a clonal selection algorithm. The dynamic equation of the manipulator was considered as an initial point, followed by designing a fuzzy controller for this purpose. To validate the effectiveness of this approach, it was compared to other techniques, such as Fuzzy, Fuzzy-PID, and fuzzy-FOPID controllers, with PID and FOPID controller parameters optimized using clonal selection algorithms. Simulation results reveal that the fuzzy-FOPID variant outperformed other methods under varying load conditions and model uncertainties, using SIMULINK/MATLAB 2014a.","PeriodicalId":30589,"journal":{"name":"Tikrit Journal of Engineering Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjes.30.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The present study explores the guidance of a robotic arm along a predefined path by implementing an optimal fuzzy fractional order PID controller-based control strategy. This method serves as a means to address the nonlinearity and unpredictability of the robotic manipulator, contingent upon the fuzzy logic controller's specifications and the employment of a clonal selection algorithm. The dynamic equation of the manipulator was considered as an initial point, followed by designing a fuzzy controller for this purpose. To validate the effectiveness of this approach, it was compared to other techniques, such as Fuzzy, Fuzzy-PID, and fuzzy-FOPID controllers, with PID and FOPID controller parameters optimized using clonal selection algorithms. Simulation results reveal that the fuzzy-FOPID variant outperformed other methods under varying load conditions and model uncertainties, using SIMULINK/MATLAB 2014a.