Research on Expressway Pavement Crack Detection based on Improved YOLOv5s

Chunlin He, Jiaye Wu, Yujie Yang
{"title":"Research on Expressway Pavement Crack Detection based on Improved YOLOv5s","authors":"Chunlin He, Jiaye Wu, Yujie Yang","doi":"10.54097/fcis.v5i3.14020","DOIUrl":null,"url":null,"abstract":"In order to address the issues of missed detection, false detection, and low accuracy of current road cracks, we propose a road crack recognition model based on improved YOLOv5. Firstly, add a CBAM attention module to the backbone network to enhance feature extraction capabilities; Then, a weighted bidirectional feature pyramid (BiFPN) is incorporated into the model for multi-scale feature fusion, replacing the traditional feature pyramid (FPN)+pixel aggregation network (PAN) structure to enhance feature fusion. The experimental results indicate that the improved model outperforms the traditional YOLOV5 model in terms of mAP@0.5 By 17.3%, the improved YOLOv5 algorithm performs well in detecting road cracks and can quickly and accurately identify and locate cracks on the road.","PeriodicalId":346823,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/fcis.v5i3.14020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to address the issues of missed detection, false detection, and low accuracy of current road cracks, we propose a road crack recognition model based on improved YOLOv5. Firstly, add a CBAM attention module to the backbone network to enhance feature extraction capabilities; Then, a weighted bidirectional feature pyramid (BiFPN) is incorporated into the model for multi-scale feature fusion, replacing the traditional feature pyramid (FPN)+pixel aggregation network (PAN) structure to enhance feature fusion. The experimental results indicate that the improved model outperforms the traditional YOLOV5 model in terms of mAP@0.5 By 17.3%, the improved YOLOv5 algorithm performs well in detecting road cracks and can quickly and accurately identify and locate cracks on the road.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型 YOLOv5s 的高速公路路面裂缝检测研究
针对目前道路裂缝存在的漏检、误检、准确率低等问题,我们提出了基于改进型 YOLOv5 的道路裂缝识别模型。首先,在骨干网络中加入 CBAM 注意模块,增强特征提取能力;然后,在模型中加入加权双向特征金字塔(BiFPN)进行多尺度特征融合,取代传统的特征金字塔(FPN)+像素聚合网络(PAN)结构,增强特征融合能力。实验结果表明,改进后的模型在 mAP@0.5 方面优于传统的 YOLOV5 模型 17.3%,改进后的 YOLOv5 算法在检测道路裂缝方面表现出色,能够快速准确地识别和定位道路裂缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Relationship between Social Responsibility and Brand Value of Chinese Food and Beverage Enterprises in the Context of High-Quality Development PCB Board Defect Detection Method based on Improved YOLOv8 Collaborative Optimization of Supply Chain Intelligent Management and Industrial Artificial Intelligence Research on the Application of Non-contact Sensing Technology in Real-time Emotional Monitoring and Feedback The Collaborative Application of Internet of Things and Artificial Intelligence in Smart Logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1