Xiaobin Zhao, Mengmeng Zhang, Wei Li, Kun Gao, Ran Tao
{"title":"A sparse representation and Cauchy distance combination graph for hyperspectral target detection","authors":"Xiaobin Zhao, Mengmeng Zhang, Wei Li, Kun Gao, Ran Tao","doi":"10.1080/2150704X.2023.2282399","DOIUrl":null,"url":null,"abstract":"ABSTRACT Hyperspectral target detection under complex background is a challenging and difficult task in remote-sensing earth observation. However, most existing algorithms assume that the background obeys the multivariate Gaussian model and ignores the complex spatial distribution. In this work, a hyperspectral target detection method based on sparse representation and Cauchy distance combined graph (SRCG) model is proposed. Firstly, pure dictionary sparse representation is used to obtain the similarity of the prior target pixel and test pixels. Secondly, the pixel-to-pixel Cauchy distance of the hyperspectral image is evaluated. Finally, the vertex edge graph pixel selection model is constructed to obtain the desired target pixels. The experimental results demonstrate the priority of the SRCG on six public and our collected hyperspectral datasets.","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/2150704X.2023.2282399","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Hyperspectral target detection under complex background is a challenging and difficult task in remote-sensing earth observation. However, most existing algorithms assume that the background obeys the multivariate Gaussian model and ignores the complex spatial distribution. In this work, a hyperspectral target detection method based on sparse representation and Cauchy distance combined graph (SRCG) model is proposed. Firstly, pure dictionary sparse representation is used to obtain the similarity of the prior target pixel and test pixels. Secondly, the pixel-to-pixel Cauchy distance of the hyperspectral image is evaluated. Finally, the vertex edge graph pixel selection model is constructed to obtain the desired target pixels. The experimental results demonstrate the priority of the SRCG on six public and our collected hyperspectral datasets.
期刊介绍:
Remote Sensing Letters is a peer-reviewed international journal committed to the rapid publication of articles advancing the science and technology of remote sensing as well as its applications. The journal originates from a successful section, of the same name, contained in the International Journal of Remote Sensing from 1983 –2009. Articles may address any aspect of remote sensing of relevance to the journal’s readership, including – but not limited to – developments in sensor technology, advances in image processing and Earth-orientated applications, whether terrestrial, oceanic or atmospheric. Articles should make a positive impact on the subject by either contributing new and original information or through provision of theoretical, methodological or commentary material that acts to strengthen the subject.