A data-informed review of scientific and technological developments and future trends in hot stamping

Jiaqi Li, Chenpeng Tong, Ruiqiang Zhang, Zhusheng Shi, Jianguo Lin
{"title":"A data-informed review of scientific and technological developments and future trends in hot stamping","authors":"Jiaqi Li,&nbsp;Chenpeng Tong,&nbsp;Ruiqiang Zhang,&nbsp;Zhusheng Shi,&nbsp;Jianguo Lin","doi":"10.1016/j.ijlmm.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>As a promising solution to the growing demand for lightweighting, hot stamping has gained considerable applications in the automotive industry. Over the past few decades, the market for hot stamping has experienced explosive growth, with ongoing advancements offering potential for further expansion of its applications. This paper provides a historical overview of hot stamping alongside an in-depth analysis of future trends. Scientific publications, patents and industrial applications of hot stamping are systematically reviewed, with major developments in materials, processes, tools, and other relevant aspects being highlighted. Through data analysis, the current state of hot stamping is comprehensively depicted, and the trends in the development of hot stamping are revealed. Additionally, the future of extending hot stamping technologies to a broader range of materials is discussed, with suggestions furnished from both academic and industrial perspectives.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000690/pdfft?md5=4ed4928a3aa01e627887288ef9967807&pid=1-s2.0-S2588840423000690-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840423000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

As a promising solution to the growing demand for lightweighting, hot stamping has gained considerable applications in the automotive industry. Over the past few decades, the market for hot stamping has experienced explosive growth, with ongoing advancements offering potential for further expansion of its applications. This paper provides a historical overview of hot stamping alongside an in-depth analysis of future trends. Scientific publications, patents and industrial applications of hot stamping are systematically reviewed, with major developments in materials, processes, tools, and other relevant aspects being highlighted. Through data analysis, the current state of hot stamping is comprehensively depicted, and the trends in the development of hot stamping are revealed. Additionally, the future of extending hot stamping technologies to a broader range of materials is discussed, with suggestions furnished from both academic and industrial perspectives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以数据为依据的热冲压科技发展和未来趋势综述
作为满足日益增长的轻量化需求的一种有前途的解决方案,热冲压技术在汽车行业获得了大量应用。在过去几十年中,热冲压市场经历了爆炸式增长,不断进步的技术为进一步扩大其应用提供了潜力。本文对热冲压的历史进行了概述,并对未来趋势进行了深入分析。本文系统回顾了热冲压的科学出版物、专利和工业应用,重点介绍了材料、工艺、工具和其他相关方面的主要发展。通过数据分析,全面描述了热冲压的现状,并揭示了热冲压的发展趋势。此外,还讨论了将热冲压技术扩展到更多材料的前景,并从学术和工业角度提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
期刊最新文献
Editorial Board Modeling and investigation of combined processes of casting, rolling, and extrusion to produce electrical wire from alloys Al–Zr system Characteristics of phases and processing techniques of high entropy alloys Editorial Board Microstructural, Electrochemical, and Hot Corrosion Analysis of CoCrFeCuTi High Entropy Alloy Reinforced Titanium Matrix Composites synthesized by Microwave Sintering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1