Javier M. Gonzalez , Warren A. Dick , Khandakar R. Islam , Dexter B. Watts , Norman R. Fausey , Dennis C. Flanagan , Marvin T. Batte , Tara T. VanToai , Randall C. Reeder , Vinayak S. Shedekar
{"title":"Cover crops, crop rotation, and gypsum, as conservation practices, impact Mehlich-3 extractable plant nutrients and trace metals","authors":"Javier M. Gonzalez , Warren A. Dick , Khandakar R. Islam , Dexter B. Watts , Norman R. Fausey , Dennis C. Flanagan , Marvin T. Batte , Tara T. VanToai , Randall C. Reeder , Vinayak S. Shedekar","doi":"10.1016/j.iswcr.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Conservation practices are encouraged to improve soil health and sustain agronomic crop production. Mehlich-3 is often used as a multi-nutrient extractant to determine soil fertility status. A study investigated the impacts of the conservation practices of gypsum, cover crops, and crop rotation on 28 Mehlich-3 extractable elements, of which 11 were considered plant nutrients, from soil at three midwestern US locations. Soil was collected from 0 to 15 and 15–30 cm depths 5 years after implementing the conservation practices. Treatments consisted of (1) with and without cereal rye (<em>Secale cereale</em> L.) winter cover, (2) continuous soybean [<em>Glycine max</em> (L.) Merr.] vs. soybean-corn (<em>Zea mays</em> L.) rotation, and (3) annual gypsum application (0, 1.1, and 2.2 Mg ha<sup>−1</sup>). Differences were observed by site, depth, and conservation practice depending on the element evaluated. Minimal interactive effects were observed among treatments. The most consistent effect was observed for crop rotation across sites. Gypsum only affected the site with the greatest clay content, where more Ca and S were retained, and Mg and Mn displaced. Cover crop only affected elements at this high clay site, where different elements were positively or negatively affected. Results suggest that not one practice fits all, and optimum conservation practices must be tailored for the site.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 650-662"},"PeriodicalIF":7.3000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000953/pdfft?md5=b2e9010aafcd225903072208df0d8ec3&pid=1-s2.0-S2095633923000953-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000953","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Conservation practices are encouraged to improve soil health and sustain agronomic crop production. Mehlich-3 is often used as a multi-nutrient extractant to determine soil fertility status. A study investigated the impacts of the conservation practices of gypsum, cover crops, and crop rotation on 28 Mehlich-3 extractable elements, of which 11 were considered plant nutrients, from soil at three midwestern US locations. Soil was collected from 0 to 15 and 15–30 cm depths 5 years after implementing the conservation practices. Treatments consisted of (1) with and without cereal rye (Secale cereale L.) winter cover, (2) continuous soybean [Glycine max (L.) Merr.] vs. soybean-corn (Zea mays L.) rotation, and (3) annual gypsum application (0, 1.1, and 2.2 Mg ha−1). Differences were observed by site, depth, and conservation practice depending on the element evaluated. Minimal interactive effects were observed among treatments. The most consistent effect was observed for crop rotation across sites. Gypsum only affected the site with the greatest clay content, where more Ca and S were retained, and Mg and Mn displaced. Cover crop only affected elements at this high clay site, where different elements were positively or negatively affected. Results suggest that not one practice fits all, and optimum conservation practices must be tailored for the site.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research