{"title":"APROBATION OF PLATELET AGGREGATION INHIBITOR FROM ECHIS MULTISQUAMATIS SNAKE VENOM IN VITRO, IN VIVO AND EX VIVO","authors":"M.A Zhelavskyi","doi":"10.15407/biotech16.05.055","DOIUrl":null,"url":null,"abstract":"Snake venom-derived platelet aggregation inhibitors can be promising antiplatelet medications that can allow to avoid the risk of bleeding and treatment resistance, particularly in aspirin-resistant patients. Our study aimed to assess the effectiveness of a platelet aggregation inhibitor derived from Echis multisquamatis snake venom in various settings, including in vitro, in vivo, and ex vivo. Methods. We examined a polypeptide from Echis multisquamatis venom, purified using a recently developed chromatography protocol, across multiple models. This polypeptide was introduced into platelet-rich blood plasma and administered intravenously to rats. The effects on platelet aggregation were assessed using aggregometry, focusing on ADP-induced aggregation. Results & Discussion. Our findings revealed that a concentration of 0.040 mg/ml significantly reduced platelet aggregation in vitro. Remarkably, this dosage also proved effective when administered intravenously in laboratory animals, reaffirming its potential as a robust antiplatelet agent. In the final phase of our study, the polypeptide demonstrated its ability to inhibit platelet aggregation in blood plasma of pregnant woman with aspirin resistance, presenting a promising avenue for innovative treatment approaches in such cases. Conclusion. This study underscores the potential of the Echis multisquamatis venom-derived polypeptide as a promising antiplatelet agent, effective in diverse scenarios, including aspirin resistance. Further research and clinical trials are imperative to fully harness its therapeutic potential.","PeriodicalId":9267,"journal":{"name":"Biotechnologia Acta","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnologia Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/biotech16.05.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Snake venom-derived platelet aggregation inhibitors can be promising antiplatelet medications that can allow to avoid the risk of bleeding and treatment resistance, particularly in aspirin-resistant patients. Our study aimed to assess the effectiveness of a platelet aggregation inhibitor derived from Echis multisquamatis snake venom in various settings, including in vitro, in vivo, and ex vivo. Methods. We examined a polypeptide from Echis multisquamatis venom, purified using a recently developed chromatography protocol, across multiple models. This polypeptide was introduced into platelet-rich blood plasma and administered intravenously to rats. The effects on platelet aggregation were assessed using aggregometry, focusing on ADP-induced aggregation. Results & Discussion. Our findings revealed that a concentration of 0.040 mg/ml significantly reduced platelet aggregation in vitro. Remarkably, this dosage also proved effective when administered intravenously in laboratory animals, reaffirming its potential as a robust antiplatelet agent. In the final phase of our study, the polypeptide demonstrated its ability to inhibit platelet aggregation in blood plasma of pregnant woman with aspirin resistance, presenting a promising avenue for innovative treatment approaches in such cases. Conclusion. This study underscores the potential of the Echis multisquamatis venom-derived polypeptide as a promising antiplatelet agent, effective in diverse scenarios, including aspirin resistance. Further research and clinical trials are imperative to fully harness its therapeutic potential.