Goal-Oriented Communications for the IoT: System Design and Adaptive Resource Optimization

P. Lorenzo, M. Merluzzi, Francesco Binucci, Claudio Battiloro, P. Banelli, E. Strinati, S. Barbarossa
{"title":"Goal-Oriented Communications for the IoT: System Design and Adaptive Resource Optimization","authors":"P. Lorenzo, M. Merluzzi, Francesco Binucci, Claudio Battiloro, P. Banelli, E. Strinati, S. Barbarossa","doi":"10.1109/IOTM.001.2300163","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) applications combine sensing, wireless communication, intelligence, and actuation, enabling the interaction among heterogeneous devices that collect and process considerable amounts of data. However, the effectiveness of IoT applications needs to face the limitation of available resources, including spectrum, energy, computing, learning and inference capabilities. This article challenges the prevailing approach to IoT communication, which prioritizes the usage of resources in order to guarantee perfect recovery, at the bit level, of the data transmitted by the sensors to the central unit. We propose a novel approach, called goal-oriented (GO) IoT system design, that transcends traditional bit-related metrics and focuses directly on the fulfillment of the goal motivating the exchange of data. The improve-ment is then achieved through a comprehensive system optimization, integrating sensing, communication, computation, learning, and control. We provide numerical results demonstrating the practical applications of our methodology in compelling use cases such as edge inference, cooperative sensing, and federated learning. These examples highlight the effectiveness and real-world implications of our pro-posed approach, with the potential to revolutionize IoT systems.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"72 1","pages":"26-32"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) applications combine sensing, wireless communication, intelligence, and actuation, enabling the interaction among heterogeneous devices that collect and process considerable amounts of data. However, the effectiveness of IoT applications needs to face the limitation of available resources, including spectrum, energy, computing, learning and inference capabilities. This article challenges the prevailing approach to IoT communication, which prioritizes the usage of resources in order to guarantee perfect recovery, at the bit level, of the data transmitted by the sensors to the central unit. We propose a novel approach, called goal-oriented (GO) IoT system design, that transcends traditional bit-related metrics and focuses directly on the fulfillment of the goal motivating the exchange of data. The improve-ment is then achieved through a comprehensive system optimization, integrating sensing, communication, computation, learning, and control. We provide numerical results demonstrating the practical applications of our methodology in compelling use cases such as edge inference, cooperative sensing, and federated learning. These examples highlight the effectiveness and real-world implications of our pro-posed approach, with the potential to revolutionize IoT systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向物联网的目标导向型通信:系统设计与自适应资源优化
物联网(IoT)应用集传感、无线通信、智能和执行于一体,实现了收集和处理大量数据的异构设备之间的互动。然而,物联网应用的有效性需要面对可用资源的限制,包括频谱、能源、计算、学习和推理能力。本文对物联网通信的主流方法提出了挑战,这种方法优先考虑资源的使用,以保证在比特级完美恢复传感器向中央单元传输的数据。我们提出了一种名为 "目标导向(GO)物联网系统设计 "的新方法,它超越了传统的比特相关指标,直接关注数据交换的目标实现情况。然后,通过整合传感、通信、计算、学习和控制的综合系统优化来实现改进。我们提供了数值结果,展示了我们的方法在边缘推理、合作传感和联合学习等引人注目的使用案例中的实际应用。这些例子突出了我们提出的方法的有效性和现实意义,有望彻底改变物联网系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Integrated Sensing and Communications for Massive MIMO LEO Satellite Systems AI for Critical Infrastructure Security: Concepts, Challenges, and Future Directions Mentor's Musings on Integrated Sensing & Communication - A Major Leap Towards an Ubiquitous IoT Paradigm IEEE Medala of Honor Cover 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1