P. Lorenzo, M. Merluzzi, Francesco Binucci, Claudio Battiloro, P. Banelli, E. Strinati, S. Barbarossa
{"title":"Goal-Oriented Communications for the IoT: System Design and Adaptive Resource Optimization","authors":"P. Lorenzo, M. Merluzzi, Francesco Binucci, Claudio Battiloro, P. Banelli, E. Strinati, S. Barbarossa","doi":"10.1109/IOTM.001.2300163","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) applications combine sensing, wireless communication, intelligence, and actuation, enabling the interaction among heterogeneous devices that collect and process considerable amounts of data. However, the effectiveness of IoT applications needs to face the limitation of available resources, including spectrum, energy, computing, learning and inference capabilities. This article challenges the prevailing approach to IoT communication, which prioritizes the usage of resources in order to guarantee perfect recovery, at the bit level, of the data transmitted by the sensors to the central unit. We propose a novel approach, called goal-oriented (GO) IoT system design, that transcends traditional bit-related metrics and focuses directly on the fulfillment of the goal motivating the exchange of data. The improve-ment is then achieved through a comprehensive system optimization, integrating sensing, communication, computation, learning, and control. We provide numerical results demonstrating the practical applications of our methodology in compelling use cases such as edge inference, cooperative sensing, and federated learning. These examples highlight the effectiveness and real-world implications of our pro-posed approach, with the potential to revolutionize IoT systems.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"72 1","pages":"26-32"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) applications combine sensing, wireless communication, intelligence, and actuation, enabling the interaction among heterogeneous devices that collect and process considerable amounts of data. However, the effectiveness of IoT applications needs to face the limitation of available resources, including spectrum, energy, computing, learning and inference capabilities. This article challenges the prevailing approach to IoT communication, which prioritizes the usage of resources in order to guarantee perfect recovery, at the bit level, of the data transmitted by the sensors to the central unit. We propose a novel approach, called goal-oriented (GO) IoT system design, that transcends traditional bit-related metrics and focuses directly on the fulfillment of the goal motivating the exchange of data. The improve-ment is then achieved through a comprehensive system optimization, integrating sensing, communication, computation, learning, and control. We provide numerical results demonstrating the practical applications of our methodology in compelling use cases such as edge inference, cooperative sensing, and federated learning. These examples highlight the effectiveness and real-world implications of our pro-posed approach, with the potential to revolutionize IoT systems.